editor's blog
Subscribe Now

K is for Kit Kat

You may recall that PNI Sensors has a sensor hub called SENtral. It represents a unique partitioning between hardware and software intended to lower its power and size. Its focus was primarily motion-oriented sensors, which, at the time, were the bulk of what system designers were paying attention to.

Since then, Google has issued their sensor requirements for Android 4.4 (Kit Kat). It requires very specific sensors, some of which are actual physical sensors, and others of which are “virtual” sensors – fused out of data from the real sensors. A step counter is an example of a virtual sensor: There is no hard step counter in any device, but the information from the inertial sensors can be combined to create the step counter.

So PNI Sensor has updated their SENtral hub to meet the Kit Kat requirements; they call it SENtral-K. It supports more sensors than their original version did, meeting the list that Google has sent down. Some of what the –K version does could have been done in the older one by adding new functions in the RAM space; this new version implements the functions in the ROM space.

One of their focuses is on what they call “simultaneity.” The idea is that it takes time to do the calculations required for the virtual sensors, and yet Android doesn’t accept excuses for virtual sensors. Heck, it thinks it knows which sensors are real and virtual, but in fact it doesn’t. (For example, the gyroscope could be a “soft gyro”).

What that means is, if you’re sampling your real sensors at 100 Hz, then Kit Kat expects all sensors – real or virtual – to be available at 100 Hz. Which means the calculations better be fast enough to keep up with that. Yeah, they’re not rocket science, but we’re talking tiny platforms drawing as little power as possible, making the burden non-trivial.

That power is lowered by implementing many of the fusion algorithms in hardware. They claim to be the lowest power, at least against microcontroller-based sensor hubs, with under 200 µA at 1.8 V, which is 360 µW. That would appear to be higher than QuickLogic’s claimed 250 µW (yes, that’s for their wearable version, but it’s the same hardware as the Kit Kat version – just different libraries), but it’s an order of magnitude less than what they show for Cortex-based hubs.

The other Kit Kat requirement they meet is that of “batching.” In and of itself, that term isn’t particularly helpful, since I can imagine a number of ways of batching sensor data. A conversation with PNI’s George Hsu clarified Google’s intent, and it wasn’t one of the scenario’s I had envisioned.

The idea is that the real sensors, from which all the virtual sensors are determined, should be buffered for some amount of time – like 10 s or so (there’s no hard spec on the time; it’s left to designers to do the right thing for their systems). If something goes wonky with the calculation and the application processor (AP) sees a sensor value that it finds suspect, it can actually go back to the original sensors, grab the historical raw data, and redo the calculations itself to confirm or correct the suspect values.

SENtral buffers five sensors: the accelerometer, the gyroscope (with and without bias correction) and the magnetometer (with and without offset correction). The buffer size is flexible; it uses RAM, and so the available RAM must be allocated between buffers and any other functions using the RAM.

Oh, and they go to pains to point out that this thing is small. (I’ve seen it; it’s small.)

SENtral-K_PNI_Sensor_red.jpg

Image courtesy PNI Sensor

 

You can find more in their announcement.

Leave a Reply

featured blogs
Jun 2, 2023
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....
Jun 2, 2023
Explore the importance of big data analytics in the semiconductor manufacturing process, as chip designers pull insights from throughout the silicon lifecycle. The post Demanding Chip Complexity and Manufacturing Requirements Call for Data Analytics appeared first on New Hor...

featured video

Automatically Generate, Budget and Optimize UPF with Synopsys Verdi UPF Architect

Sponsored by Synopsys

Learn to translate a high-level power intent from CSV to a consumable UPF across a typical ASIC design flow using Verdi UPF Architect. Power Architect can focus on the efficiency of the Power Intent instead of worrying about Syntax & UPF Semantics.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The CadenceĀ® Celsiusā„¢ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Power Conversion for Home Health Care
Sponsored by Mouser Electronics and CUI Inc.
Did you know that the global home medical equipment market is projected to reach over fifty-five billion dollars by 2030? In this episode of Chalk Talk, Bruce Rose from CUI Inc and Amelia Dalton explore the various safety certifications and regulations needed for home health care designs. They also examine the roles that temperature, isolation, and leakage current play in home health care power conversion and the additional requirements needed for power supplies for home health care applications.
Oct 12, 2022
28,323 views