editor's blog
Subscribe Now

Planning PCB, Package, and Die Together

Silicon chips and the packages that house them have been steadily drawing closer to each other over the years. There are so many pins on individual dice now – and multiple dice are going into single packages. Optimizing which bumps from which dice go to which pins is a non-trivial project.

Part of the problem is that package design and die design have traditionally belonged to different departments using completely different tools that don’t talk to each other. That’s left engineers using Excel and such to try to visualize and plan pinouts.

The bulk of this isn’t changing – there is, as far as I know, no ubertool coming that includes both silicon and package design. But what can change is the means of planning the pinout – going to something more robust and efficient than Excel.

The same problem exists, by the way, with board design. Obviously, production board design is a process completely independent of die design; the die is designed once and then used on any number of boards. But optimizing board routing can also be challenging. Not to mention that doing some trial PCB layouts when planning the die isn’t a bad idea either.

Making this easier is the goal of Cadence’s new OrbitIO tool. It allows visualization and planning of signals. Because it couches its results as routing instructions and constraints, it’s a more dynamic way of planning; changes can be made with less work.

Once planned in OrbitIO, the results get pushed down into silicon design tools – Encounter or Virtuoso – in the form of a LEF/DEF die abstract file and to their multi-die package design tool, SiP-XL, via package data. They also get pushed to Allegro PCB on the board side, meaning that the die pinout’s effect can be evaluated all the way through to trial PCB layouts.

OrbitIO_image.png

Image courtesy Cadence

In terms of evaluating what a “good” layout is, that’s partly visual, but the tool also provides lengths and number of routing layers as figures of merit. Note, however, that this analysis only goes as far as the pad ring on the die. Once planned, the effects of the pinout can be analyzed in the silicon design tool based on the data pushed to the tool by OrbitIO.

OrbitIO can be used most effectively if done prior to die floorplanning – it becomes an input to that floorplanning process. By handing data back and forth, the tools eliminate some of the tedious and error-prone steps that have to be taken with Excel and other hacks. Then pinout helps drive routing internally.

For multi-die packages, OrbitIO can work with dice in design, where pinouts can theoretically still be moved about, or with fixed dice – say, for a memory chip that’s being included in the package. The memory chip has no flexibility – it is what it is, so the tool needs to accommodate that.

If pinout is planned or changed after much of the die layout is in place, then the silicon tool can help evaluate the impact of the pinout on the die layout, and iteration is likely to find the best compromises.

You can find out more in Cadence’s announcement.

Leave a Reply

featured blogs
Jan 22, 2021
Amidst an ongoing worldwide pandemic, Samtec continues to connect with our communities. As a digital technology company, we understand the challenges and how uncertain times have been for everyone. In early 2020, Samtec Cares suspended its normal grant cycle and concentrated ...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 22, 2021
This is my second post about this year's CES. The first was Consumer Electronics Show 2021: GM, Intel . AMD The second day of CES opened with Lisa Su, AMD's CEO, presenting. AMD announced new... [[ Click on the title to access the full blog on the Cadence Community...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

featured chalk talk

Nordic Cellular IoT

Sponsored by Mouser Electronics and Nordic Semiconductor

Adding cellular connectivity to your IoT design is a complex undertaking, requiring a broad set of engineering skills and expertise. For most teams, this can pose a serious schedule challenge in getting products out the door. In this episode of Chalk Talk, Amelia Dalton chats with Kristian Sæther of Nordic Semiconductor about the easiest path to IoT cellular connectivity with the Nordic nRF9160 low-power system-in-package solution.

Click here for more information about Nordic Semiconductor nRF91 Cellular IoT Modules