editor's blog
Subscribe Now

Intelligent VIP

This year’s DAC included a discussion with Arrow Devices. They’re a company exclusively focused on protocol VIP. They’re not a tool company (other than, as we’ll see, their debug assistant); their VIP plugs into any of your standard tools.

There are three distinct angles they play: verification (making sure your design works in the abstract, before committing to silicon), validation (making sure the silicon works; they also include emulation models in this as well), and debug.

Their focus is on protocol abstraction: allowing verification to proceed at a high level so that designers can execute their tests and review the results at the level of the protocol rather than at the signal level. This enhanced semantic intelligence is how they claim to distinguish themselves from their VIP competition, saying that verification can be completed two to three times faster as compared to competitive VIP.

The verification suites consist of bus-functional models (BFMs) and suites of tests, coverage, and assertions. These work in virtual space. The validation suites, by contrast, have to be synthesizable – hence usable in emulators. They include software APIs and features like error injection. Their debugger is also protocol-aware, although it’s independent of the VIP: it works with anyone’s VIP based on modules that give the debugger the protocol semantics.

One of the effects of digging deep into a protocol is that you occasionally uncover ambiguities in the standards. When they find these, they take them in a couple of directions. On the one hand, they may need to build option selections into the VIP so that the customer can choose the intended interpretation. On the other hand, they can take the ambiguities to the standards bodies for clarification.

On the debug side of things, the protocol awareness ends up being more than just aggregating signals into higher-level entities. When testing a given protocol, the specific timing of signals may vary; a correct implementation might have some cycle-level variations as compared to a fixed golden version. So they had to build in higher-level metadata, assigning semantics to various events so that the events can be recognized and reported. This tool works at the transaction level, not at the waveform level; they’re looking at connecting it to a waveform viewer in the future.

Their protocol coverage varies.

  • For verification, they cover the JEDEC UFS (Universal Flash Standard) protocol, MIPI’s M-PHY, UniPro, and CSI-3 protocols, and USB power delivery and 2.0 host/device protocols.
  • For validation, they cover only USB 3.0 – but they also claim to be the only ones offering VIP for USB 3.0.
  • Finally, the debugger has modules supporting USB 3.0 and 2.0; JEDEC UFS; PCIe/M-PCIe, MIPI UniPro, CSI-3 and -2, and DIS; and AMBA/ACE/AXI/AHB/APB.

You can find out more on their site.

Leave a Reply

featured blogs
Oct 22, 2020
WARNING: If you read this blog and visit the featured site, Max'€™s Cool Beans will accept no responsibility for the countless hours you may fritter away....
Oct 22, 2020
Cadence ® Spectre ® AMS Designer is a high-performance mixed-signal simulation system. The ability to use multiple engines and drive from a variety of platforms enables you to "rev... [[ Click on the title to access the full blog on the Cadence Community site....
Oct 20, 2020
In 2020, mobile traffic has skyrocketed everywhere as our planet battles a pandemic. Samtec.com saw nearly double the mobile traffic in the first two quarters than it normally sees. While these levels have dropped off from their peaks in the spring, they have not returned to ...
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

featured video

Demo: Low-Power Machine Learning Inference with DesignWare ARC EM9D Processor IP

Sponsored by Synopsys

Applications that require sensing on a continuous basis are always on and often battery operated. In this video, the low-power ARC EM9D Processors run a handwriting character recognition neural network graph to infer the letter that is written.

Click here for more information about DesignWare ARC EM9D / EM11D Processors

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

Electronic Fuses (eFuses)

Sponsored by Mouser Electronics and ON Semiconductor

Today’s advanced designs demand advanced circuit protection. The days of replacing old-school fuses are long gone, and we need solutions that provide more robust protection and improved failure modes. In this episode of Chalk Talk, Amelia Dalton chats with Pramit Nandy of ON Semiconductor about the latest advances in electronic fuses, and how they can protect against overcurrent, thermal, and overvoltage.

More information about ON Semiconductor Electronic Fuses