editor's blog
Subscribe Now

Muscling Up

We’ve seen gesture recognition before, and the two major modes, if you will, are using cameras (either 2- or 3-D) to “see” and interpret gestures and using inertial sensors to detect hand motion and infer gestures.

Thalmic is about to launch its own gesture control armband, but they rely on a completely different source of information for detecting gestures: muscle movements. Or, more accurately, the electrical signals that govern muscle movement.

The measurement technique is called “electromyography” (EMG), and the device they’re building is called the Myo. While it does contain an inertial sensor, they say that they can detect much more subtle gestures by reading the muscles and cross-referencing that information with that of the IMU, making outsized gesturing less necessary. They claim that the EMG readings are impervious to sweat, dryness, heat, hair, and differences in muscle tone.

Each device contains 8 EMG sensors plus an IMU, some computing capability, and Bluetooth LE. The signals are processed in the armband; the output is an event representing a classified gesture. All of the usable gestures are pre-defined; they’re keeping the number of gestures to a small number.

While the gestures are fixed, their meanings aren’t. Application developers can use their SDK to assign specific semantics for the gestures within their applications. It’s even possible to fuse the events from two different armbands (one on each arm) for more complex two-handed gesturing.

I talked to them in May at the Embedded Vision Summit (ironic); at that time they had alpha samples out for developers. They recently announced the final design, slimming down and changing the look as compared to the alpha armband. In the process, they had to redo some of the electronics to accommodate the shape – and, according to their blog, they’ve improved the electrical performance in the process. Final devices are now expected to ship in September.

Myo_figure.png

 

This doesn’t strike me as something you’d just wear around; it’s still pretty bulky as an accessory. But using it specifically as an input device for things like gaming is an interesting twist. It will also be interesting to see what new roles EMG may provide in future devices.

Leave a Reply

featured blogs
Dec 7, 2023
Semiconductor chips must be designed faster, smaller, and smarter'”with less manual work, more automation, and faster production. The Training Webinar 'Flow Wrapping: The Cadence Cerebrus Intelligent Chip Explorer Must Have' was recently hosted with me, Krishna Atreya, Princ...
Dec 6, 2023
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

BMP585: Robust Barometric Pressure Sensor
In this episode of Chalk Talk, Amelia Dalton and Dr. Thomas Block from Bosch Sensortec investigate the benefits of barometric pressure sensors for a variety of electronic designs. They examine how the ultra-low power consumption, excellent accuracy and suitability for use in harsh environments can make Bosch’s BMP585 barometric pressure sensors a great fit for your next design.
Oct 2, 2023
7,928 views