editor's blog
Subscribe Now

Muscling Up

We’ve seen gesture recognition before, and the two major modes, if you will, are using cameras (either 2- or 3-D) to “see” and interpret gestures and using inertial sensors to detect hand motion and infer gestures.

Thalmic is about to launch its own gesture control armband, but they rely on a completely different source of information for detecting gestures: muscle movements. Or, more accurately, the electrical signals that govern muscle movement.

The measurement technique is called “electromyography” (EMG), and the device they’re building is called the Myo. While it does contain an inertial sensor, they say that they can detect much more subtle gestures by reading the muscles and cross-referencing that information with that of the IMU, making outsized gesturing less necessary. They claim that the EMG readings are impervious to sweat, dryness, heat, hair, and differences in muscle tone.

Each device contains 8 EMG sensors plus an IMU, some computing capability, and Bluetooth LE. The signals are processed in the armband; the output is an event representing a classified gesture. All of the usable gestures are pre-defined; they’re keeping the number of gestures to a small number.

While the gestures are fixed, their meanings aren’t. Application developers can use their SDK to assign specific semantics for the gestures within their applications. It’s even possible to fuse the events from two different armbands (one on each arm) for more complex two-handed gesturing.

I talked to them in May at the Embedded Vision Summit (ironic); at that time they had alpha samples out for developers. They recently announced the final design, slimming down and changing the look as compared to the alpha armband. In the process, they had to redo some of the electronics to accommodate the shape – and, according to their blog, they’ve improved the electrical performance in the process. Final devices are now expected to ship in September.

Myo_figure.png

 

This doesn’t strike me as something you’d just wear around; it’s still pretty bulky as an accessory. But using it specifically as an input device for things like gaming is an interesting twist. It will also be interesting to see what new roles EMG may provide in future devices.

Leave a Reply

featured blogs
Sep 23, 2022
When I rejoined Cadence in 2015, we had not yet announced Palladium Z1. But it was basically done, and we announced it a couple of months later. I wrote about the announcement in my post Palladium Z1, an Enterprise Server Farm in a Rack . Next, we created Protium X1 which I c...
Sep 22, 2022
On Monday 26 September 2022, Earth and Jupiter will be only 365 million miles apart, which is around half of their worst-case separation....
Sep 22, 2022
Learn how to design safe and stylish interior and exterior automotive lighting systems with a look at important lighting categories and lighting design tools. The post How to Design Safe, Appealing, Functional Automotive Lighting Systems appeared first on From Silicon To Sof...

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Power Multiplexing with Discrete Components

Sponsored by Mouser Electronics and Toshiba

Power multiplexing is a vital design requirement for a variety of different applications today. In this episode of Chalk Talk, Amelia Dalton chats with Talayeh Saderi from Toshiba about what kind of power multiplex solution would be the best fit for your next design. They discuss five unique design considerations that we should think about when it comes to power multiplexing and the benefits that high side gate drivers bring to power multiplexing.

Click here for more information about Toshiba Gate Driver + MOSFET for 5-24V Line Power MUX