editor's blog
Subscribe Now

Wireless Power Progress: Efficiency and Distance

We met PowerByProxi recently when discussing wireless battery charging options. Well, they’ve recently announced what they claim to be a couple of milestones both in distance and charging power.

The distance metric has them able to charge in the “z” direction up to 30 mm away. That’s 3 cm; roughly an inch and a half. Which doesn’t actually seem that far, but, critically, since they can penetrate various construction materials, this means they can go through counters and tables (much as we discussed in the WiTricity case).

More significantly, they’ve upped their charging power to what they say is an industry-leading 7.5 W. Those of you who know phone power systems in detail may note that, at least as PowerByProxi tells it, the power management ICs (PMICs) throttle wireless charging power to 3.5 or 5 W to avoid overheating. (No such limit is placed on wired charging.)

Given that fact, you might wonder how PowerByProxi tested this out (short of designing their own PMIC): they did it by adding a dummy load to the phone to pull extra power. Their goal is that, by demonstrating 7.5-W charging (per receiver, or device being charged), future PMICs can eliminate the limit, allowing faster charging.

They also announced a “personal charger” in the shape of a bowl. This was a prototype demonstrating that phones or wearable gadgetry could be simply dropped into the bowl, without any careful positioning, and they would be properly charged.

They’re targeting this for the new Qi v1.2 protocol, which uses the lower-frequency 200 kHz range, even though PowerByProxi makes charging systems at other frequencies (they’re not firmly wedded to one format).

You can read more about their developments in their announcement.

Leave a Reply

featured blogs
Mar 28, 2023
In this user case, Marintek uses Fidelity Fine/Marine and Hexpress for resistance curve prediction of a planning hull and its validation against the model test cases. Team Involved End User: Eloïse Croonenborghs, Research Scientist at MARINTEK, Maritime division, Trondhe...
Mar 23, 2023
Explore AI chip architecture and learn how AI's requirements and applications shape AI optimized hardware design across processors, memory chips, and more. The post Why AI Requires a New Chip Architecture appeared first on New Horizons for Chip Design....
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

Flexible Development with the PSoC 62S2 Evaluation Kit
Sponsored by Mouser Electronics and Infineon
In order to get a successful IoT design launched today, we need a robust toolbox of cloud connectivity solutions, sensor interfaces, radio modules, and more. In this episode of Chalk Talk, Amelia Dalton and Paul Wiegele from Infineon investigate the PSoC™ 62S2 Evaluation Kit from Infineon. They take a closer look at the key features included in this kit and how it can help jumpstart your next IoT design.
Nov 11, 2022
17,985 views