editor's blog
Subscribe Now

When Wireless Means Cellular in the IoT

When we talk about the Internet of Things (IoT), we’re talking about communication. But, for much of the discussion – in particular, for the consumer IoT (CIoT) – we end up focusing on WiFi, BlueTooth, and wired technologies (with TCP or UDP over IP assumed if you’re going over the internet to the Cloud).

But for industrial settings (the so-called industrial IoT, or IIoT), there’s one more critical wireless technology that we might not think about because it’s hard to imagine how it would work for the CIoT. (And it sounds really expensive.) It’s the mobile network.

We lowly consumers have started to watch our data more carefully now that caps are in place, but, other than that, we don’t think much about the data we send across. Heck, we have few tools for watching how much data we’re using; for instance, we have no way of gauging in advance just how much data we might be chewing up when accessing a particular website. So we just browse (and hopefully we don’t cringe when the bill comes).

And most of us have only a phone; we don’t connect other things to the cellular network because that would mean expensive new charges and, in most cases, a separate phone number for each Thing. Who needs that?

Well, as it turns out, industrial users have a different model. And by “industrial,” don’t think dark, dirty, greasy buildings with sparks and flames and incessant, threatening rumblings. Think open sky, fresh air, miles from civilization and, critically, from a WiFi or BlueTooth access point. You’re now on a farm in the middle of Montana, and “your” tractor needs to talk to the Mothership (as we’ll see in a future piece, your tractor may no longer be your tractor in future business models).

Or perhaps it’s a mining operation (yeah, probably need to rethink the fresh air thing for that). The common denominator is that you’re far enough away from things that cellular is your only option. (And you’re not so far out that you can’t even get that…)

As Jasper (the IoT Jasper, not the EDA Jasper recently bought by Cadence) tells it, industrial folks work with their cellular providers in a very different manner from the rest of us. When we use the cell network to get to the internet, we go through a shared gateway, referred to via an “access point name” (APN). But some businesses have custom APNs – and, while we sit here locked into our two-year contracts, they can programmatically go in and change their plans at pretty much any time.

Just spitting out a few bytes at a time? Go set the plan to something cheap. But when the weekly upload is scheduled, then, before doing the upload, you go in and change to a better plan for more data, upload the data, and then change the plan back. And all done without the need to talk to some customer service person that’s going to try to upsell all the way. Totally different world.

But here’s the deal: apparently each mobile carrier operates a bit differently. It’s not like there’s a global standard regarding the details of how you interact with these guys. And it’s complicated. (Of course.) So Jasper has built a layer that abstracts away the details of interconnecting with different operators into a single, unified API. This effectively becomes part of your transport layer, allowing more generic data handling above it. You can deal with the cellular network in the abstract, and the Jasper platform manages the details required for each carrier. Jasper says that they have relationships with 19 different carriers.

The Jasper technology includes the ability to manage and observe what’s going on with respect to the connections, and you can set up rules to automate different aspects. But, to be clear, these rules are different from those you might see in other so-called platforms. Many platforms offer the ability to set up business rules at a high level, and that’s not what this is. These are lower-level connection-oriented rules. A task management example Jasper provided was to set a rule that wakes a node up at 4 AM, sends a predefined bunch of data, and then goes back to sleep. Or it could watch to see if two simultaneous sessions happen – which might indicate a problem.

Jasper and ILS just announced a collaboration; what’s happening here is that Jasper is helping ILS by handling the mobile piece of the network.

Now… if you look at Jasper’s website, it’s pretty broad-sounding. And I started to wonder whether they actually competed with ILS in some respects. Turns out that. no, Jasper is specifically about the mobile network part; nothing else. (I found that out through a conversation, not from the website.)

In that conversation, they noted that cellular might be chosen even when other options are available. Jasper’s Macario Namie described one installation where a copier was going in, and the copier-maker wanted to charge by the copy – meaning they needed direct data access to the copier (one of those new business model things).

Problem is, trying to get in through the normal wired network (or WiFi) meant punching a hole through the firewall – which requires IT support and might fail when things are reconfigured. So instead, they put a cell radio on the copier and went that way. Problem solved.

You can read more about the ILS/Jasper collaboration in their announcement.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadenceā€™s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Achieving Reliable Wireless IoT
Wireless connectivity is one of the most important aspects of any IoT design. In this episode of Chalk Talk, Amelia Dalton and Brandon Oakes from CEL discuss the best practices for achieving reliable wireless connectivity for IoT. They examine the challenges of IoT wireless connectivity, the factors engineers should keep in mind when choosing a wireless solution, and how you can utilize CEL wireless connectivity technologies in your next design.
Nov 28, 2023
20,021 views