editor's blog
Subscribe Now

TSVs: Like Vias, Only 1000X Deeper

We recently looked at Applied Materials’ solution to the challenges of lining small vias: using cobalt. But those are through-dielectric vias. What about through-silicon vias (TSVs)? After all, they can be a thousand times deeper than a standard via, so if a standard via is hard to cover, imagine how hard it must be for a TSV.

Of course, we’re talking a wider via, but AMAT says that standard physical vapor deposition (PVD) tools do an inadequate job of coating the TSVs when applying the barrier, for lots of the same reasons we discussed in the cobalt story.

Their solution to the TSV issue isn’t quite as radical as a new metal; it involves tightening up the angle of dispersion for the metals, providing better coverage. With better coverage, the barrier can also be made thinner, saving cost. A thinner layer is faster to deposit, improving throughput (and reducing cost).

Figure.png

 

(Image courtesy Applied Materials)

In addition, they’ve built a production-worthy chamber for use with titanium rather than the more typical “proven” tantalum. Titanium apparently being cheaper than tantalum. Both can be integrated with the copper seed.

You can read more about their Ventura PVD in their announcement.

Leave a Reply

featured blogs
Aug 1, 2021
https://youtu.be/I0AYf5V_irg Made in Long Ridge Open Space Preserve (camera Carey Guo) Monday: HOT CHIPS 2021 Preview Tuesday: Designed with Cadence Video Series Wednesday: July Update Thursday:... [[ Click on the title to access the full blog on the Cadence Community site. ...
Jul 30, 2021
You can't attack what you can't see, and cloaking technology for devices on Ethernet LANs is merely one of many protection layers implemented in Q-Net Security's Q-Box to protect networked devices and transaction between these devices from cyberattacks. Other security technol...
Jul 29, 2021
Learn why SoC emulation is the next frontier for power system optimization, helping chip designers shift power verification left in the SoC design flow. The post Why Wait Days for Results? The Next Frontier for Power Verification appeared first on From Silicon To Software....
Jul 28, 2021
Here's a sticky problem. What if the entire Earth was instantaneously replaced with an equal volume of closely packed, but uncompressed blueberries?...

featured video

Intelligent fall detection using TI mmWave radar sensors

Sponsored by Texas Instruments

Actively sense when a fall has occurred and take action such as sending out an alert in response. Our 60GHz antenna-on-package radar sensor (IWR6843AOP) is ideal for fall detection applications since it’s able to detect falls in large, indoor environments, can distinguish between a person sitting and falling, and utilizes a point cloud vs a person’s identifiable features, which allows the sensor to be used in areas where privacy is vital such as bathrooms and bedrooms.

Click here to explore the AOP evaluation module

featured paper

Harnessing the Power of Data to Enhance Quality of Life for Seniors

Sponsored by Maxim Integrated

This customer testimonial highlights the CarePredict digital health platform. Its main device, the Tempo wearable, uses artificial intelligence to derive actionable insights to enhance care and quality of life for seniors.

Click to read more

featured chalk talk

Software and Automotive Safety

Sponsored by Siemens Digital Industries Software

In the realm of automotive designs, safety must reign above all else. But the question remains: How can we innovate within the constraints of today’s safety standards? In this episode of Chalk Talk, Amelia Dalton chats with Rob Bates from Siemens about the role ISO 26262 plays when it comes to COTS and open source software, what certified software components are all about, and how heterogeneous multiprocessing can be helpful in your next automotive design.

Click here to download the whitepaper called "Is it Possible to know how Safe we are in a World of Autonomous Cars?