editor's blog
Subscribe Now

TSVs: Like Vias, Only 1000X Deeper

We recently looked at Applied Materials’ solution to the challenges of lining small vias: using cobalt. But those are through-dielectric vias. What about through-silicon vias (TSVs)? After all, they can be a thousand times deeper than a standard via, so if a standard via is hard to cover, imagine how hard it must be for a TSV.

Of course, we’re talking a wider via, but AMAT says that standard physical vapor deposition (PVD) tools do an inadequate job of coating the TSVs when applying the barrier, for lots of the same reasons we discussed in the cobalt story.

Their solution to the TSV issue isn’t quite as radical as a new metal; it involves tightening up the angle of dispersion for the metals, providing better coverage. With better coverage, the barrier can also be made thinner, saving cost. A thinner layer is faster to deposit, improving throughput (and reducing cost).

Figure.png

 

(Image courtesy Applied Materials)

In addition, they’ve built a production-worthy chamber for use with titanium rather than the more typical “proven” tantalum. Titanium apparently being cheaper than tantalum. Both can be integrated with the copper seed.

You can read more about their Ventura PVD in their announcement.

Leave a Reply

featured blogs
Jan 20, 2026
Long foretold by science-fiction writers, surveillance-driven technologies now decide not just what we see'”but what we pay....

featured video

Revolutionizing AI Chip Development: Synopsys Solutions for the Future

Sponsored by Synopsys

In the AI era, demand for advanced chips is soaring, creating scaling and power challenges. Discover how Synopsys accelerates AI chip development with innovative solutions, robust partnerships, and cutting-edge silicon IP for first-pass silicon success.

Click here for more information

featured chalk talk

eUSB2 Redriver (Non-Retiming Repeater)
In this episode of Chalk Talk, Dong Nguyen from NXP and Amelia Dalton explore the features of NXP’s PTN3222 eUSB Redriver. They investigate how it overcomes signal integrity challenges and why it’s the ideal solution for ensuring seamless compatibility between your cutting-edge silicon and the world of standard USB 2.0.
Jan 12, 2026
13,357 views