editor's blog
Subscribe Now

Synopsys’s IP Initiative

IP used to refer to hardware designs that could be purchased off the shelf. Actually, at first they were designs that wouldn’t really work for any real application without a consulting contract to adapt them. But, over time, “shrink wrapped” became more viable. The idea was to save design time.

That idea still holds, but we’ve replaced one problem – design of individual blocks – with another: assembling all of the IP blocks into a complete system. And these IP blocks are more than your grampa’s simple fast Fourier transform; these are typically complete protocols that need to run a software stack.

Once assembled, the system will run the system software that’s being written for the SoC in parallel with the hardware design –software that’s separate from, and likely makes use of, the shrink-wrapped protocol libraries that may accompany the hardware IP.

So the full project development process involves hardware designers getting hardware running – first in prototypes, then in silicon. Meanwhile, software guys are coding away, using both virtual prototypes of the hardware and, eventually, the hardware prototypes that the hardware buys built.

In order to accommodate this more complex flow, Synopsys has announced their IP Initiative. It involves a more holistic view of how IP is integrated into SoCs, and the idea is to make the IP and accompanying elements work out of the box so no time is wasted on things that have already been completed – all of the effort can go into integration.

The image below shows the bigger picture of what they’re trying to accomplish. It includes both existing elements (like the hardware IP) and new elements being released as of the announcement, like the prototyping kits.

Figure.png

The IP prototyping kits are intended for hardware engineers, and they include a working reference design out-of-the-box on a HAPS board. IP licencees will have access to the accompanying IP RTL. Meanwhile, the IP software development kits include tools and virtual platform models of the IP that, again, work out-of-the-box.

The final bit, customized IP subsystems, gets to the challenges of putting all of these pieces together and coaxing them to work. Individual IP blocks work out of the box, but assembling them into an SoC isn’t trivial. Synopsys offers services to help create subsystems out of blocks.

You can read more about their offering in their announcement.

Leave a Reply

featured blogs
May 19, 2022
The current challenge in custom/mixed-signal design is to have a fast and silicon-accurate methodology. In this blog series, we are exploring the Custom IC Design Flow and Methodology stages. This... ...
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...
Apr 29, 2022
What do you do if someone starts waving furiously at you, seemingly delighted to see you, but you fear they are being overenthusiastic?...

featured video

Intel® Agilex™ M-Series with HBM2e Technology

Sponsored by Intel

Intel expands the Intel® Agilex™ FPGA product offering with M-Series devices equipped with high fabric densities, in-package HBM2e memory, and DDR5 interfaces for high-memory bandwidth applications.

Learn more about the Intel® Agilex™ M-Series

featured paper

5 common Hall-effect sensor myths

Sponsored by Texas Instruments

Hall-effect sensors can be used in a variety of automotive and industrial systems. Higher system performance requirements created the need for improved accuracy and more integration – extending the use of Hall-effect sensors. Read this article to learn about common Hall-effect sensor misconceptions and see how these sensors can be used in real-world applications.

Click to read more

featured chalk talk

The Composite Power Inductance Story

Sponsored by Mouser Electronics and Vishay

Power inductor technology has made a huge difference in the evolution of our electronic system designs. In this episode of Chalk Talk, Amelia Dalton chats with Tim Shafer from Vishay about the history of power inductor technology, how Vishay developed the most compact and efficient power inductor on the market today and why Vishay’s extensive portfolio of composite power inductors might be the best solution for your next embedded system design.

Click here for more information about Vishay Inductors