editor's blog
Subscribe Now

KLA-Tencor’s New Reticle Inspector

Seems like no aspect of IC design and production escapes the need for All Things to Get Harder and Harder, requiring ever-better solutions. Today we look at reticle inspection, and, in particular, at KLA-Tencor efforts to adapt their Teron system, originally intended for mask shop use, to the needs of production fabs. The idea is that, when new reticles come into the fab, they need to be inspected as a basic QC step. And, after 300-600 or so uses, they need to be re-qualified to make sure that acquired defects aren’t reducing die yield.

One practical consideration is floorspace. The volume of reticles is increasing due, for example, to multiple patterning, which multiplies the number of reticles for some layers. 14-nm flows literally double the number of reticles as compared to 20 nm. No one wants to add more machines to handle the extra load; fab managers would rather increase the processing capabilities of the “space” currently allocated to inspection, placing an extra burden on the equipment.

So what kinds of defects are the inspection systems looking for? There are several, but haze seems to be a big one. Haze represents the slow deposition of chemicals – presumably from various other processing steps – onto the reticle. Obviously the best solution is to eliminate the sources of the haze, and progress has been made on that, but some remains – and, of course, it’s now harder to detect.

For one thing, it used to predominate in open spaces, where it’s easier to pick out. Now it tends to collect along the sides of features, making it harder to see. Also, because there’s less haze, you’re looking for smaller, more isolated defects than before, when a cloud-like collection would be more evident. The presence of optical proximity correction (OPC) features makes this harder, since they can be hard to distinguish from defects.

Other things to look for include evidence of the chrome, which makes up the actual pattern, “migrating” – narrowing or flattening after cleaning, as well as simple “fall-on” defects that won’t fall off.

So how do you go about finding these things? There are a number of techniques, some of which work and some of which no longer do. In the end, a combination works best.

  • Simple optical inspection can be used, but it has to be “actinic” – that is, use the same wavelength of light that will be used during wafer patterning: 193 nm.
  • For repeating patterns, it used to be helpful to compare neighboring versions of the same feature. But that is less useful today because, even though the original layout of each cell may be the same, the OPC features may be different, so the cells are no longer identical on the reticle.
  • Production reticles often have more than one die instance, so it can be useful to compare neighboring dice on the reticle. But for leading-edge processes, single-die reticles are more common – as are shuttle wafer reticles, which have multiple dissimilar dice that can’t be compared. So this technique isn’t so useful anymore.
  • Modeling can help. KLA-Tencor generates models offline and uses them in real time to compare to what’s actually being seen.
  • KLA-Tencor also uses a technique that they consider to be one of their differentiating strengths: a “difference image.” They capture images of how light is transmitted and reflected through the reticle. From each of those, they calculate what the other ought to look like. So, for instance, from the reflected image, they calculate what the transmitted image would be in the absence of any defects. And vice versa. They can then subtract the calculated versions from the observed versions – calculated transmitted vs. observed transmitted, and likewise for reflected – and use the differences to pinpoint defects. This is a compute-intensive operation that places a heavy load on the inspection equipment.

The processing power they’ve built into their just-announced Teron SL650 is intended to handle the inspection complexity with a high signal-to-noise ratio while still accommodating the increased number of reticles it needs to handle.

Figure_cr-red.jpg

(Image courtesy KLA-Tencor)

You can find more on the new system in their announcement.

Leave a Reply

featured blogs
Oct 22, 2020
WARNING: If you read this blog and visit the featured site, Max'€™s Cool Beans will accept no responsibility for the countless hours you may fritter away....
Oct 22, 2020
Cadence ® Spectre ® AMS Designer is a high-performance mixed-signal simulation system. The ability to use multiple engines and drive from a variety of platforms enables you to "rev... [[ Click on the title to access the full blog on the Cadence Community site....
Oct 20, 2020
In 2020, mobile traffic has skyrocketed everywhere as our planet battles a pandemic. Samtec.com saw nearly double the mobile traffic in the first two quarters than it normally sees. While these levels have dropped off from their peaks in the spring, they have not returned to ...
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

See Inuitive’s NU4000 3D imaging and vision processor in action. The SoC supports high-quality 3D depth processor engine, SLAM accelerators, computer vision, and deep learning by integrating Synopsys ARC EV processor. In this demo, the NU4000 demonstrates simultaneous 3D sensing, SLAM and CNN functionality by mapping out its environment and localizing the sensor while identifying the objects within it. For more information, visit inuitive-tech.com.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

AVX Supercapacitors: PrizmaCap

Sponsored by Mouser Electronics and AVX

If your application requires a supercapacitor, there are a lot of options. You need the right form factor, temperature range, weight, and capacitance, of course. In this episode of Chalk Talk, Amelia Dalton chats with Eric DeRose of AVX about choosing the right supercapacitor and about PrizmaCap - a new supercapacitor with low height, high temperature, and lightweight.

Click here for more information AVX PrizmaCap™