editor's blog
Subscribe Now

Wireless Power and Heating

We covered wireless power before, and one of the points of differentiation was that of inadvertent heating of nearby items. With systems using the lower 200-kHz frequency range, nearby largish metal items like coins and keys can heat up. The systems themselves are designed to detect this and shut the charger down, which addresses the safety issue. It’s just a bother if you think your phone is being charged when in fact it isn’t due to something else around there.

But then it was pointed out that heating can theoretically be an issue for any frequency; it’s just a matter of the thickness of the material and the frequency used. Higher frequencies would create heating in thinner objects; lower frequencies would heat thicker objects. Which means that the 6.78-MHz range of charging can also cause heating for some thinner range of metallic items.

So in the MHz range, keys and coins are fine; is there anything else that might accidentally come in range? Turns out there is one thing: CDs, which have a very thin foil in them (standard kitchen-grade aluminum foil is too thick). And, confirming with WiTricity, yes, they can actually heat up. (And system designers can detect the issue and shut down, just as the lower-frequency systems do. Which means the phone-didn’t-charge bother could happen there too). It could probably be argued that it’s less likely for a CD to be in the way (and, one might ask, who still uses CDs, anyway?) But, they were eager to point out, in cases where there was heating, they had never seen an instance of a CD actually losing any data.

That’s all well and good, at least until I started extrapolating the Cota technology (which we covered today), which uses RF at 2.4 GHz. If the MHz range affects CDs, it’s pretty much impossible to imagine something so thin that the GHz system would affect it. Just following that line of thought, I then realized that integrated circuits have extremely thin films of metals in them. Could this be a problem?

I asked this of Ossia, and they reminded me that the signal power being delivered to charge a phone is no higher than what the phone itself transmits. So if the phone isn’t heating its own metal, then the charging shouldn’t either.

Bear in mind that neither of us did the calculation to see if those IC thin films fall into a range that would even theoretically be affected; the power argument makes it an academic calculation. It also occurs to me on further hindsight that this isn’t resonant charging; it is, as PowerByProxi pointed out, more like harvesting RF for energy. So that might change the entire scenario.

So, in summary:

  • 200-kHZ resonant systems can heat objects like keys and coins; systems can detect and shut down for safety
  • 6.78-MHz resonant systems can heat CDs; systems can detect and shut down for safety
  • 2.4 GHz RF systems should have no heating issues.

Leave a Reply

featured blogs
May 7, 2021
In one of our Knowledge Booster Blogs a few months ago we introduced you to some tips and tricks for the optimal use of Virtuoso ADE Product Suite with our analog IC design videos . W e hope you... [[ Click on the title to access the full blog on the Cadence Community site. ...
May 7, 2021
Enough of the letter “P” already. Message recieved. In any case, modeling and simulating next-gen 224 Gbps signal channels poses many challenges. Design engineers must optimize the entire signal path, not just a specific component. The signal path includes transce...
May 6, 2021
Learn how correct-by-construction coding enables a more productive chip design process, as new code review tools address bugs early in the design process. The post Find Bugs Earlier Via On-the-Fly Code Checking for Productive Chip Design and Verification appeared first on Fr...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Designing TI mmWave radar made easier using our third-party ecosystem

Sponsored by Texas Instruments

If you are new to radar or interested in replacing your existing sensing technology with radar, there can be a significant learning curve to both designing your product and ramping to production. In order to lower this barrier, Texas Instruments created a third-party ecosystem of radar experts who can provide solutions no matter how much help you need.

Click to read more

Featured Chalk Talk

Electronic Fuses (eFuses)

Sponsored by Mouser Electronics and ON Semiconductor

Today’s advanced designs demand advanced circuit protection. The days of replacing old-school fuses are long gone, and we need solutions that provide more robust protection and improved failure modes. In this episode of Chalk Talk, Amelia Dalton chats with Pramit Nandy of ON Semiconductor about the latest advances in electronic fuses, and how they can protect against overcurrent, thermal, and overvoltage.

More information about ON Semiconductor Electronic Fuses