editor's blog
Subscribe Now

IoT Via WiFi

We recently looked at levels of data communication in the Internet of Things (IoT) and established three levels:

–          Formal communications protocol level (e.g., TCP/IP)

–          Generic data level (e.g., Xively)

–          Business objects

At the recent Internet of Things Engineering Summit, I talked with another company that illustrates some of how this works. They’re called Econais. (I keep seeing this as looking French, and I want to pronounce it “eh-koh-NAY” – but that’s wrong: it’s a Greek company, and it’s pronounced “ee-KOH-ness”).

Econais recently announced a new module for connecting Things to WiFi. And the focus is on making integration easy: with 20 lines of code, you can connect to a local WiFi network. Assuming your Thing doesn’t have a screen (and, like a motion detector, might even be mounted someplace inconvenient), your phone acts as the keyboard, launching Thing code that gets connection information from the access point. This is part of their ProbMe (“probe me” – named after its pinging capability) in-situ management system.

Because Econais implements standards like WiFi and TCP, with no further abstraction, it occupies the comms protocol level (i.e., the first of the three above). But they also partner with Xively, who lays over the protocol level. In fact, for a programmer, both APIs are then available: you can write at the detailed Econais level or at the more abstracted Xively level.

Drawing.png

The overall idea here is that you can get onto the network easily with Econais, but you can then manipulate data more easily at the Xively (or whoever lies above this) level. Of course, the WiFi only goes as far as the access point; to get to the cloud, you then transition to the various other wired (or even wireless) comms protocols that make up the Internet.

Econais actually has two families of WiFi module, the 19D01, which doesn’t have an MCU in it (so presumably you attach it to your Thing that already has an MCU) and the recently-announced 19W01, which includes an MCU as well as integrated FLASH and an antenna. It’s all a bit confusing since, at the time of this writing, these distinctions aren’t clear on the website or some of the graphics. But size is an important selling factor for them: the MCU-less version is an 8-mm square module; the W01 is 14 mm x 12 mm.

And, just as I was preparing to post this, notice came in of a new Lantronix WiFi module for Arduino boards. So it slides into the same category. It is larger, at 24 mm x 16.5 mm.

For more info on Econais’s new W01 board, check out their announcement; for Lantronix, you can find their announcement here.

 

Update (5/14/14): I have some more clarification on the Econais integration story.

  • There’s an EC32L module that has an MCU separate from the WiFi chip.
  • The EC19W products integrate the MCU in with the WiFi chip, although the MCU is still available for developer programs. Some of the other hardware interfaces (A/D, GPIO, etc.) are reduced vs. the EC32L.
  • Both of these include FLASH and an antenna, so they’re certified by the various international organizations.
  • The EC19D excludes the FLASH and antenna. It’s therefore not certified (but presumably a system including it would need to be).

Leave a Reply

featured blogs
May 7, 2021
In one of our Knowledge Booster Blogs a few months ago we introduced you to some tips and tricks for the optimal use of Virtuoso ADE Product Suite with our analog IC design videos . W e hope you... [[ Click on the title to access the full blog on the Cadence Community site. ...
May 7, 2021
Enough of the letter “P” already. Message recieved. In any case, modeling and simulating next-gen 224 Gbps signal channels poses many challenges. Design engineers must optimize the entire signal path, not just a specific component. The signal path includes transce...
May 6, 2021
Learn how correct-by-construction coding enables a more productive chip design process, as new code review tools address bugs early in the design process. The post Find Bugs Earlier Via On-the-Fly Code Checking for Productive Chip Design and Verification appeared first on Fr...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Smile, You're on My Security Camera!

Sponsored by Maxim Integrated

Advances in wireless and IoT technologies are fueling market growth for security camera systems. Outdoor security cameras need to operate for a long time on small disposable batteries. This design solution shows how a high-performance power management system can power an outdoor security camera several months longer than an ordinary solution.

Click to read more

featured chalk talk

RF Interconnect for 12G-SDI Broadcast Applications

Sponsored by Mouser Electronics and Amphenol RF

Today’s 4K and emerging 8K video standards require an enormous amount of bandwidth. And, with all that bandwidth, there are new demands on our interconnects. In this episode of Chalk Talk, Amelia Dalton chats with Mike Comer and Ron Orban of Amphenol RF about the evolution of broadcast technology and the latest interconnect solutions that are required to meet these new demands.

Click here for more information about Amphenol RF Adapters & Cable Assemblies for Broadcast