editor's blog
Subscribe Now

IC Compiler Reinvented

What if you could just… toss it all and start over? (OK, maybe all except the router?)

If you’re Synopsys, you now know: you’d end up with IC Compiler II.

They’ve had a good ride with IC Compiler, and they continue to ride that. But things have changed a lot since it appeared on the scene. Requirements and expectations have mushroomed, and they’ve done a lot of new research and acquired a lot of technology (apparently their Magma acquisition fed into this). And so they’ve pretty much replaced everything in IC Compiler except the router.

The new approach pushes planning to a much earlier stage. Engines have been completely redone, with an emphasis on the ability to use multiple processors, which means that more options can be explored. They use that magic number “10x” for many of the speedups. Not only that, but their optimization engines are better at finding a global optimum in an analytical fashion rather than via the alternative: generating a bazillion options and picking the best one.

More specifically, they address the following areas:

  • Infrastructure
    • Hierarchy is handled natively.
    • They have a new timer and extractor that are used consistently throughout.
    • They can deal with incomplete data early in the design cycle.
    • They’ve implemented an integrated library and management approach.
  • Planning
    • They’ve implemented adaptive abstraction and modeling.
    • They support transparent multiple instances.
    • What-if analysis can be done in real time instead of having to compile.
    • A floorplan can be automatically synthesized.
  • Implementation
    • This is where they have the new multi-threaded optimization engine that analytically finds global optima.
    • They’ve redone their multi-corner, multi-mode, multi-voltage handling.
    • Placement and clock optimization now happen in a single step.
    • They’ve completely redone the clock tree synthesis engine.
    • They’ve put in place new ways to achieve closure after routing.

ICC_II_Graphic_Press2_red.jpg

At this point, the entire new system isn’t in place yet. They’ve got bits and pieces that they’ve been feeding to a few lead customers to refine things as they approach a mid-year full release.

They will continue to support the original IC Compiler well into the future. They see a gradual shift from one to the other; they’re not going to pull a Microsoft and force everyone over.

You can check out more in their announcement.

Leave a Reply

featured blogs
Apr 18, 2021
https://youtu.be/afv9_fRCrq8 Made at Target Oakridge (camera Ziyue Zhang) Monday: "Targeting" the Open Compute Project Tuesday: NUMECA, Computational Fluid Dynamics...and the America's... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 16, 2021
Spring is in the air and summer is just around the corner. It is time to get out the Old Farmers Almanac and check on the planting schedule as you plan out your garden.  If you are unfamiliar with a Farmers Almanac, it is a publication containing weather forecasts, plantin...
Apr 15, 2021
Explore the history of FPGA prototyping in the SoC design/verification process and learn about HAPS-100, a new prototyping system for complex AI & HPC SoCs. The post Scaling FPGA-Based Prototyping to Meet Verification Demands of Complex SoCs appeared first on From Silic...
Apr 14, 2021
By Simon Favre If you're not using critical area analysis and design for manufacturing to… The post DFM: Still a really good thing to do! appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

From Chips to Ships, Solve Them All With HFSS

Sponsored by Ansys

There are virtually no limits to the design challenges that can be solved with Ansys HFSS and the new HFSS Mesh Fusion technology! Check out this blog to know what the latest innovation in HFSS 2021 can do for you.

Click here to read the blog post

Featured Chalk Talk

Magnetics for High Voltage

Sponsored by Mouser Electronics and Bourns

With today’s trend toward ever-increasing voltages in energy systems, choosing the right transformer for the job has become an engineering challenge. High voltages demand careful attention to insulation, clearance, and creepage. In this episode of Chalk Talk, Amelia Dalton chats with Cathal Sheehan of Bourns about choosing magnetics for high-voltage applications.

More information about Bourns Magnetics for High Voltage Applications