editor's blog
Subscribe Now

A Jump in EUV Resist Sensitivity

There was an interesting presentation that happened towards the end of SPIE Litho – it seemed to catch the audience off guard, and I frankly went away with the sense that there was some confusion in the room.

The presentation discussed an experiment that was done at Osaka University as part of the overall effort to optimize EUV exposure. It all relates to this seemingly inviolate triumvirate of “RLS”: resolution, LWR (line-width roughness), and sensitivity. Improvements within these three have to come at the expense of something within these three – they form a zero-sum game.

Normally, you expose the photoresist through the mask for the entire length of the exposure. The photons create acid where they interact with the resist, and this acid provides for the selective removal of resist material during development.

This experiment changed that. The exposure was broken into two steps:

  • A short exposure through the mask
  • After 10-15 minutes, then, with no mask, just a flood of UV across the entire wafer.

The first exposure seemed to create some acid, but mostly “sensitized” the photoresist (and I frankly didn’t come away understanding what that “sensitizing” meant from a chemical standpoint). The strange thing then was that flooding with the second exposure created the normal amount of acid only in the sensitized area.

This provided about 9 times the prior sensitivity, with no apparent tradeoff in LWR or resolution.

Note that no special resists were used; these were the same resists as are currently being used.

I didn’t get the sense that they had a real handle on what the underlying mechanisms were, and it was surprising to the audience. Assuming the data are correct, it’s certainly an interesting result. We’ll have to see if anything further comes of it, or if it goes the way of cold fusion…

Leave a Reply

featured blogs
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....
Sep 30, 2022
Wow, September has flown by. It's already the last Friday of the month, the last day of the month in fact, and so time for a monthly update. Kaufman Award The 2022 Kaufman Award honors Giovanni (Nanni) De Micheli of École Polytechnique Fédérale de Lausanne...
Sep 29, 2022
We explain how silicon photonics uses CMOS manufacturing to create photonic integrated circuits (PICs), solid state LiDAR sensors, integrated lasers, and more. The post What You Need to Know About Silicon Photonics appeared first on From Silicon To Software....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Tame the SiC Beast - Unleash the Full Capacity of Silicon Carbide

Sponsored by Mouser Electronics and Microchip

Wide band gap materials such as silicon carbide are revolutionizing the power industry. At the same time, they can also introduce byproducts including overheating, short circuits and over voltage. The question remains: how can we use silicon carbide without those headache-inducing side effects? In this episode of Chalk Talk, Amelia Dalton chats with Rob Weber from Microchip about Microchip’s patented augmented switching technology can make those silicon carbide side effects a thing of the past while reducing our switching losses up to 50% and accelerating our time to market as well.

Click here for more information about the Microsemi / Microchip AgileSwitch® ASDAK+ Augmented Switching™ Dev Kit