editor's blog
Subscribe Now

A Jump in EUV Resist Sensitivity

There was an interesting presentation that happened towards the end of SPIE Litho – it seemed to catch the audience off guard, and I frankly went away with the sense that there was some confusion in the room.

The presentation discussed an experiment that was done at Osaka University as part of the overall effort to optimize EUV exposure. It all relates to this seemingly inviolate triumvirate of “RLS”: resolution, LWR (line-width roughness), and sensitivity. Improvements within these three have to come at the expense of something within these three – they form a zero-sum game.

Normally, you expose the photoresist through the mask for the entire length of the exposure. The photons create acid where they interact with the resist, and this acid provides for the selective removal of resist material during development.

This experiment changed that. The exposure was broken into two steps:

  • A short exposure through the mask
  • After 10-15 minutes, then, with no mask, just a flood of UV across the entire wafer.

The first exposure seemed to create some acid, but mostly “sensitized” the photoresist (and I frankly didn’t come away understanding what that “sensitizing” meant from a chemical standpoint). The strange thing then was that flooding with the second exposure created the normal amount of acid only in the sensitized area.

This provided about 9 times the prior sensitivity, with no apparent tradeoff in LWR or resolution.

Note that no special resists were used; these were the same resists as are currently being used.

I didn’t get the sense that they had a real handle on what the underlying mechanisms were, and it was surprising to the audience. Assuming the data are correct, it’s certainly an interesting result. We’ll have to see if anything further comes of it, or if it goes the way of cold fusion…

Leave a Reply

featured blogs
Feb 21, 2024
In the dynamic landscape of automotive design, optimizing aerodynamics is key to achieving peak performance, fuel efficiency, vehicle range, and sustainability. Large eddy simulation (LES), a cutting-edge simulation technique, is reshaping how we approach automotive aerodynam...
Feb 15, 2024
This artist can paint not just with both hands, but also with both feet, and all at the same time!...

featured video

Shape The Future Now with Synopsys ARC-V Processor IP

Sponsored by Synopsys

Synopsys ARC-V™ Processor IP delivers the optimal power-performance-efficiency and extensibility of ARC processors with broad software and tools support from Synopsys and the expanding RISC-V ecosystem. Built on the success of multiple generations of ARC processor IP covering a broad range of processor implementations, including functional safety (FS) versions, the ARC-V portfolio delivers what you need to optimize and differentiate your SoC.

Learn more about Synopsys ARC-V RISC-V Processor IP

featured paper

How to Deliver Rock-Solid Supply in a Complex and Ever-Changing World

Sponsored by Intel

A combination of careful planning, focused investment, accurate tracking, and commitment to product longevity delivers the resilient supply chain FPGA customers require.

Click here to read more

featured chalk talk

Industrial Internet of Things (IIoT)
Sponsored by Mouser Electronics and Eaton
In this episode of Chalk Talk, Amelia Dalton and Mohammad Mohiuddin from Eaton explore the components, communication protocols, and sensing solutions needed for today’s growing IIoT infrastructure. They take a closer look at how Eaton's circuit protection solutions, magnetics, capacitors and terminal blocks can help you ensure the success of your next industrial internet of things design.
Jun 14, 2023
29,367 views