editor's blog
Subscribe Now

Cleaning Up the Verification Shop

It’s one thing if different tools from different divisions of the same company don’t talk seamlessly together. Generally considered poor form. While that used to be common, EDA folks have cleaned that up a lot over the years.

It’s generally better accepted when tools from one company don’t necessarily integrate well with tools from another company. If there are good strategic reasons, it will happen. If not, then, as a designer or EDA manager, you’re on your own for patching the tools together.

But what about when, as a company, you go on a multi-year shopping spree? Now tools that used to be made by different companies have magically transformed into tools from different – or even combined – divisions within the company. So what might have looked tolerable amongst multiple companies starts to look messy within a single company.

Of course, we know who our intrepid EDA shopper is: They of the Endlessly Open Purse, Synopsys. They recently announced that they are bringing their various verification technologies together under the unified moniker “Verification Compiler.” This unites, to a degree,

  • Static and formal analysis
  • Simulation
  • Coverage management/analysis
  • Verification IP
  • Debug

The nature of how this comes together seems to have a couple forms, and more is yet to come. To a certain extent, this is a packaging/licensing thing, where what used to be separate products can now be purchased and managed together as a bundle.

From an outside user’s view, however, you will still run the tools as you always did – this isn’t an integration into a seamless, consistent, unified GUI – although that’s the part that’s likely to come in the future. For now, use models will remain similar.

But it’s not only a marketing thing you can learn more if you read here. Underneath, these tools have had engines upgraded, and, in particular, they have been made to talk much more efficiently to each other using native integration rather than slower, less efficient (but more portable) approaches like PLI. The entire suite of tools can be scripted into a unified flow, rather than the current situation where each tool has a distinct flow.

The big win here thanks to these nuts-and-bolts improvements is performance. They post some pretty impressive gains – summarizing them as being 5 times faster (yielding 3 times the productivity). One formal project run by an unnamed customer ran 21 times faster. Capacity has also improved – in some cases by as much as 4 times.

One important message in the face of this inter-tool bonding: Verdi is remaining open. You may recall that one of the items in Synopsys’s shopping cart was SpringSoft, and the Verdi debug tool has a popular open interface and ecosystem. Even though they’re tightening their internal integration with Verdi, they’re not closing off access to outsiders.

In case you’re bringing out your checkbook right now, heads-up: unless you are amongst the anointed, you probably can’t get it yet. This is targeted for end-of-year broad availability; for now, it’s being wrung out by “limited customers.” I’ll leave it to you and Synopsys to decide whether you’re one of them.

And you can find out more about this in their release.

featured blogs
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Enter the InnovateFPGA Design Contest to Solve Real-World Sustainability Problems

Sponsored by Intel

The Global Environment Facility (GEF) Small Grants Programme, implemented by the U.N. Development Program, is collaborating with the #InnovateFPGA contest to support 7 funded projects that are looking for technical solutions in biodiversity, sustainable agriculture, and marine conservation. Contestants have access to the Intel® Cyclone® V SoC FPGA in the Cloud Connectivity Kit, Analog Devices plug-in boards, and Microsoft Azure IoT.

Learn more about the contest and enter here by September 30, 2021

featured paper

Choose a high CMTI gate driver that cuts your SiC switch dead-time

Sponsored by Maxim Integrated (now part of Analog Devices)

As GaN and SiC FETs begin to replace MOSFET and IGBT technologies in power switching applications, this Maxim paper discusses the key considerations when selecting an isolated gate driver. The paper explains the importance of CMTI and propagation delay skew and presents an isolated gate driver IC ideal for use with these new power transistors.

Click to read more

featured chalk talk

How Trinamic's Stepper Motor Technologies Improve Your Application

Sponsored by Mouser Electronics and Maxim Integrated (now part of Analog Devices)

Stepper motor control has come a long way in the past few years. New techniques can give greater control, smoother operation, greater torque, and better efficiency. In this episode of Chalk Talk, Amelia Dalton chats with Lars Jaskulski about Trinamic stepper solutions and how to take advantage of micro stepping, load measurement, and more.

Click here for more information about Trinamic TMCM-6110 6-Axis Stepper Motor Driver Board