editor's blog
Subscribe Now

IoT Update: I Give Up

Last year I proposed an overall architecture for the Internet of Things (IoT). The goal was to clarify the many different pieces required to make this work. And, in particular, to clarify which companies do which parts of the IoT.

There are so many companies that say the “enable the IoT.” But what does that mean? Last year, it could have meant many things, and so I tried to make some sense out of it. My intent was to come back and revise and refresh that effort.

That’s what I started to do recently – until throwing my hands up in dismay. There are so many companies claiming to participate in this business, and there’s typically not enough information available to place them properly in the various categories I set up. I have updated the table below, but only to the point where I surrendered.

You could argue that, as a journalist, I should be digging into each and every one of these companies to ferret out the truth. Up to a point, I agree; that’s what I did before. But after a while, I realized that I was turning into an industry analyst.

In reality, it would keep me from doing anything else for a while. Truly fleshing things out now would be something of a full-time job for a while.

Meanwhile, the number and range of companies tying their pitches to the IoT has ballooned. I could probably tie sneakers to it… let’s see… the first commercial application of a special new rubber in the soles, the volume sales of which will provide the revenues necessary to research new elastomers in home widgets that can be connected to the IoT! Boom! “New Footwear Supports the IoT”

<sigh>

So I’m going to keep watching for and covering interesting IoT technology and companies doing new, unique things that can clearly demonstrate a substantial IoT connection. (Like today’s M2M discussion of DDS.) But for the moment, characterizing all the companies claiming an IoT connection feels a tad too quixotic. I hate embarking on something and then backing off… but… there you have it.

Figure.png

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

Clinical-Grade AFE Measures Four Vital Signs for Remote Patient Monitoring Devices

Sponsored by Analog Devices

Simplify the design of wearable remote patient monitoring devices by measuring four vital signs with one triple-system vital signs AFE. This single-chip AFE integrates three measurement systems (optical, ECG and bio-impedance) to obtain four common vital signs: electrocardiogram, heart rate, blood-oxygen saturation, and respiration rate.

Find Out More

featured chalk talk

In-Chip Sensing and PVT Monitoring

Sponsored by Synopsys

In-chip monitoring can significantly alter the lifecycle management landscape. By taking advantage of modern techniques, today’s more complex designs can be optimized even after they are deployed. In this episode of Chalk Talk, Amelia Dalton chats with Stephen Crosher of Synopsys about silicon lifecycle management and how to take full advantage of the optimization opportunities available for scalability, reliability, and much more.

Click here for more information about in-chip monitoring and sensing