editor's blog
Subscribe Now

Emulation: 3B Gates, 3 MHz

In the first major emulator news since Synopsys gobbled up EVE, Synopsys announced the next generation of the EVE platform, ZeBu 3. And, as with pretty much any emulator story, the top line has to do with capacity and performance: how much design can I cram in there and how fast will it go?

They claim industry-leading 3 MHz (with one example going as high as 3.5 MHz), as compared to what they say is a competition range more around 1-1.5 MHz (I’ll let the comps comment on whether or not that’s a representative number). As to capacity, you can stitch up to 10 of their boxes together for a total of 3 billion gates.

They also mention a number of different use modes for emulation, which are morphing as capabilities both inside and outside the emulator evolve. One in particular caught my eye because of how it contrasts with past usage.

Once upon a time, a significant use model for an emulator was to accelerate simulation. If there was a piece of the hardware that was taking too long to simulate – and in particular if it didn’t need simulator-level observability (remember: in a simulator, you can theoretically access every node; in actual hardware, you can only access those nodes that have been provisioned for access) – then you could implement that function in hardware and have the simulator call it as needed.

That ended up shining the spotlight on a significant bottleneck: handing off the function to the emulator, which required specifying pin-level signals across the interface. This led to the development of the transaction-based SCE-MI 2 interface, which abstracted away the detailed pin-level interface, making it all go so much faster.

That’s all old news. As emulator capacity and speed have improved, the focus has moved more to acceleration of software execution in SoCs. Not only does the emulator execute the software more quickly than a simulator can, features like save and restore can allow you to capture the state, say, after boot-up, and start there rather than having to go through the entire boot sequence every time. Yes ,you could theoretically do this with simulation as well, but simulating software just takes too long.

So we’ve gone from mostly verifying by simulation (on a PC) to doing much more of the verification on an emulator, now that it’s big enough. But you know… we’re never satisfied, are we? Give us an inch, and we want another inch. Yes, we can run software fast, but we don’t care about all of the software, or perhaps we don’t care about all of it in as much debug detail. Believe it or not, this software is taking too long to run on the emulator.

So what to do? How about running it on a virtual platform? Virtual platforms abstract away the low-level execution details, and so they can run much faster. So now, in a complete role reversal, the emulator can offload software execution to a PC running a virtual platform, which acts as an accelerator for the emulator – the very same emulator (or a bigger, faster version) that used to be an accelerator for the PC doing simulation. Synopsys refers to this as “hybrid mode,” one of the various use modes that ZeBu 3 supports.

What goes around…

You can get more details on all of those modes as well as the other speeds and feeds in their release.

Leave a Reply

featured blogs
Jan 22, 2021
Amidst an ongoing worldwide pandemic, Samtec continues to connect with our communities. As a digital technology company, we understand the challenges and how uncertain times have been for everyone. In early 2020, Samtec Cares suspended its normal grant cycle and concentrated ...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 22, 2021
This is my second post about this year's CES. The first was Consumer Electronics Show 2021: GM, Intel . AMD The second day of CES opened with Lisa Su, AMD's CEO, presenting. AMD announced new... [[ Click on the title to access the full blog on the Cadence Community...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Common Design Pitfalls When Designing With Hall 2D Sensors And How To Avoid Them

Sponsored by Texas Instruments

This article discusses three widespread application issues in industrial and automotive end equipment – rotary encoding, in-plane magnetic sensing, and safety-critical – that can be solved more efficiently using devices with new features and higher performance. We will discuss in which end products these applications can be found and also provide a comparison with our traditional digital Hall-effect sensors showing how the new releases complement our existing portfolio.

Click here to download the whitepaper

featured chalk talk

Thunderbolt Technology Overview

Sponsored by Mouser Electronics and Intel

Thunderbolt is the closest thing we’ve got to universal interconnect between a wide variety of devices and systems. With a universal USB-C connector, it can do video, power, data communication - all at scalable rates with smart adjustment. In this episode of Chalk Talk, Amelia Dalton chats with Sandeep Vedanthi of Intel about the latest in Thunderbolt technology - Thunderbolt 4, which brings a number of benefits over previous versions.

Click here for more information about Intel 8000 series Thunderbolt™ 4 Controllers