editor's blog
Subscribe Now

Emulation: 3B Gates, 3 MHz

In the first major emulator news since Synopsys gobbled up EVE, Synopsys announced the next generation of the EVE platform, ZeBu 3. And, as with pretty much any emulator story, the top line has to do with capacity and performance: how much design can I cram in there and how fast will it go?

They claim industry-leading 3 MHz (with one example going as high as 3.5 MHz), as compared to what they say is a competition range more around 1-1.5 MHz (I’ll let the comps comment on whether or not that’s a representative number). As to capacity, you can stitch up to 10 of their boxes together for a total of 3 billion gates.

They also mention a number of different use modes for emulation, which are morphing as capabilities both inside and outside the emulator evolve. One in particular caught my eye because of how it contrasts with past usage.

Once upon a time, a significant use model for an emulator was to accelerate simulation. If there was a piece of the hardware that was taking too long to simulate – and in particular if it didn’t need simulator-level observability (remember: in a simulator, you can theoretically access every node; in actual hardware, you can only access those nodes that have been provisioned for access) – then you could implement that function in hardware and have the simulator call it as needed.

That ended up shining the spotlight on a significant bottleneck: handing off the function to the emulator, which required specifying pin-level signals across the interface. This led to the development of the transaction-based SCE-MI 2 interface, which abstracted away the detailed pin-level interface, making it all go so much faster.

That’s all old news. As emulator capacity and speed have improved, the focus has moved more to acceleration of software execution in SoCs. Not only does the emulator execute the software more quickly than a simulator can, features like save and restore can allow you to capture the state, say, after boot-up, and start there rather than having to go through the entire boot sequence every time. Yes ,you could theoretically do this with simulation as well, but simulating software just takes too long.

So we’ve gone from mostly verifying by simulation (on a PC) to doing much more of the verification on an emulator, now that it’s big enough. But you know… we’re never satisfied, are we? Give us an inch, and we want another inch. Yes, we can run software fast, but we don’t care about all of the software, or perhaps we don’t care about all of it in as much debug detail. Believe it or not, this software is taking too long to run on the emulator.

So what to do? How about running it on a virtual platform? Virtual platforms abstract away the low-level execution details, and so they can run much faster. So now, in a complete role reversal, the emulator can offload software execution to a PC running a virtual platform, which acts as an accelerator for the emulator – the very same emulator (or a bigger, faster version) that used to be an accelerator for the PC doing simulation. Synopsys refers to this as “hybrid mode,” one of the various use modes that ZeBu 3 supports.

What goes around…

You can get more details on all of those modes as well as the other speeds and feeds in their release.

Leave a Reply

featured blogs
Mar 28, 2024
The difference between Olympic glory and missing out on the podium is often measured in mere fractions of a second, highlighting the pivotal role of timing in sports. But what's the chronometric secret to those photo finishes and record-breaking feats? In this comprehens...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

Advantech Industrial AI Camera: Small but Mighty
Sponsored by Mouser Electronics and Advantech
Artificial intelligence equipped camera systems can be a great addition to a variety of industrial designs. In this episode of Chalk Talk, Amelia Dalton and Ryan Chan from Advantech explore the components included in an industrial AI camera system, the benefits of Advantech’s AI ICAM-500 Industrial camera series and how you can get started using these solutions in your next industrial design. 
Aug 23, 2023
26,438 views