editor's blog
Subscribe Now

An ALS That Does RGB

My oh my, how the smartphone has colored our (or at least my) expectations. And color is the operative word here.

When you think, “ambient light sensor (ALS)” (yes, I know you think the parenthetical too), what do you think next? That sensor on the smartphone that can tell whether the ambient light is high or low so that it can adjust the display and keyboard backlights and such? Yeah… me too.

So then I see an announcement from Maxim about their new ALS. And it separates out colors. Now… color me stupid, but is it that someone doesn’t want their phone to react if they’re, say, in a darkroom with red light? That would make no sense – because no one uses darkrooms anymore. [Prepares for filmophile rage…]

It’s actually not that crazy; we did cover Intersil’s RGB sensor recently, and we noted there that an RGB sensor can help with tinted glass, but it was also set out in contrast to an ALS.

So here’s me feeling kinda dense, so I checked in with Maxim. Who kindly and gently helped me remember that there are more applications out there than just cellphones. Who knew.

They listed as exemplary applications:

  • Color sensors
  • Contrast sensors
  • Color sorting
  • Gas and fluid analysis
  • Label presence
  • Lid insertion verification
  • Shrink-wrap presence
  • Tamper-proof seal confirmation
  • Visual inspection replacement
  • Automatic display brightness

In other words, there are many sensing applications – particularly in an industrial environment – that benefit from analysis of the ambient light. And that might involve looking at very specific colors or fractions of colors. Which is why they have three color sensors and feed the separate color components for use in detection algorithms.

Now, based on the Intersil definitions, this would be an RGB sensor, as contrasted with an ALS. In Maxim’s terminology, this is an ALS. You can rationalize either nomenclature; I just feel better knowing there might be some miniscule rationale for my occasional lapses into states of confusion. (No need to suggest that they’re more than occasional, thank you anyway.)

Interestingly, though, Maxim focuses on different applications from the ones Intersil was suggesting; Intersil seemed more focused on displays (not just phones, but TVs and such), LED lighting, and cameras – less industrial in flavor than what Maxim has outlined. Which I guess goes to show that there are many ways to use an RGB sensor, or ALS with RGB, or whatever you want to call it.

On the heels of yet another light sensor that senses UV without a specific UV sensor – that is, by using a single visible light sensor that also detects into the UV range, and then extracting the UV by algorithms – I checked in to see whether this truly had three sensors or whether the colors were extracted from a single sensor. Answer: yes, three sensors.

You can find more detail in Maxim’s announcement.

Leave a Reply

featured blogs
Jul 25, 2021
https://youtu.be/cwT7KL4iShY Made on "a tropical beach" Monday: Aerospace and Defense Systems Day...and DAU Tuesday: 75 Years of the Microprocessor Wednesday: CadenceLIVE Cloud Panel... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jul 24, 2021
Many modern humans have 2% Neanderthal DNA in our genomes. The combination of these DNA snippets is like having the ghost of a Neanderthal in our midst....
Jul 23, 2021
Synopsys co-CEO Aart de Geus explains how AI has become an important chip design tool as semiconductor companies continue to innovate in the SysMoore Era. The post Entering the SysMoore Era: Synopsys Co-CEO Aart de Geus on the Need for AI-Designed Chips appeared first on Fro...
Jul 9, 2021
Do you have questions about using the Linux OS with FPGAs? Intel is holding another 'Ask an Expert' session and the topic is 'Using Linux with Intel® SoC FPGAs.' Come and ask our experts about the various Linux OS options available to use with the integrated Arm Cortex proc...

featured video

Electromagnetic Analysis for High-Speed Communication

Sponsored by Cadence Design Systems

When your team is driving the future of breakthrough technologies like autonomous driving, industrial automation, and healthcare, you need software that helps meet approaching deadlines and increasingly high-performance demands. Learn how a system analysis solution can provide accurate 3D modeling, electromagnetic simulation, and electrothermal simulation at the chip, package, PCB, and system level.

Click to learn more

featured paper

Long-term consistent performance matters for humidity sensing applications

Sponsored by Texas Instruments

The exposed polymer of humidity sensors can be impacted by the environment, leading to drift over time. This article from Texas Instruments discusses the accuracy and long-term drift of humidity sensors and how these parameters affect system performance and lifetime.

Click to read more

featured chalk talk

Automotive Infotainment

Sponsored by Mouser Electronics and KEMET

In today’s fast-moving automotive electronics design environment, passive components are often one of the last things engineers consider. But, choosing the right passives is now more important than ever, and there is an exciting and sometimes bewildering range of options to choose from. In this episode of Chalk Talk, Amelia Dalton chats with Peter Blais from KEMET about choosing the right passives and the right power distribution for your next automotive design.

Click here for more information about KEMET Electronics Low Voltage DC Auto Infotainment Solutions