editor's blog
Subscribe Now

A New Coverage Concept

OneSpin announced a Quantify MDV product a few years back. With it, they defined a number of different coverage aspects – things that could be verified with their formal technology. Now they’ve reinforced that product with a new version. And that version contains yet another coverage concept.

The older coverage concepts focused on the design itself and the quality of stimulus used in verification. It would check for things like dead code and over-constraining, the former reflecting a possible code issue and the latter indicating that legitimate cases may not be covered by existing tests. I discussed these elements in my original coverage of the tool.

In recent times, they struggled a bit with what to call these checks. You might think they’re simply “design” checks, except for the constraining bits. The aspect that gets to simulation coverage had them calling it “simulation” coverage, but that didn’t really cut it either. They landed on “reachability,” since things like dead or redundant code indicated design elements that may or may not be reachable, and the constraints also get to whether or not certain failures can be reached by the tests. It’s not a perfect nomenclature, but, absent something perfect, it’s what they settled on.

Why even worry? Well, they needed to distinguish all of those coverage aspects from a new one they were adding. This new one tests the completeness of the assertions and checkers in the design. The assertions are designed to catch problems during formal verification, but it’s possible to write ineffective assertions. Looked at another way, if assertions are poor or incomplete, then there may be code failures that could never be observed by the assertions.

So they refer to this as “observation coverage.” And they test it using a form of “mutation” analysis: making a code change and seeing if the assertion picks it up. If not, then there may be a hole in the assertion.

This appears to be a newish concept, and it’s not comprehended in the UCIS coverage standard; they’re in discussions on that.

You can get a more complete picture of their latest Quantify release in their announcement.

Leave a Reply

featured blogs
Oct 27, 2021
ASIC hardware verification is a complex process; explore key challenges and bug hunting, debug, and SoC verification solutions to satisfy sign-off requirements. The post The Quest for Bugs: The Key Challenges appeared first on From Silicon To Software....
Oct 27, 2021
Cadence was recently ranked #7 on Newsweek's Most Loved Workplaces list for 2021 and #17 on Fortune's World's Best Workplaces list. Cadence received top recognition among thousands of other companies... [[ Click on the title to access the full blog on the Cadence Community s...
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

DesignCon 2021 112G Ethernet & PCIe 6.0 IP Demos

Sponsored by Synopsys

This video features Synopsys' silicon-proven DesignWare 112G Ethernet and PCIe 6.0 PHY IP solutions successfully interoperating with Samtec's AI/ML edge connectors and Amphenol's Direct Attach Copper (DAC) cables with superior Bit Error Rates (BERs) at maximum performance.

Click here for more information about DesignWare 112G Ethernet PHY IP

featured paper

The ABCs of Glitch-Free Voltage Supervisors

Sponsored by Maxim Integrated (now part of Analog Devices)

Reset glitches can trigger a false signal to the processor or critical load during power-up. This application note discusses the various aspects and benefits of a glitch-free supervisor.

Click to read more

featured chalk talk

ROHM Gate Drivers

Sponsored by Mouser Electronics and ROHM Semiconductor

Today’s rapid growth of power and motor control applications demands a fresh look at gate driver technology. Recent advances in gate drivers help designers hit new levels of efficiency and performance in their designs. In this episode of Chalk Talk, Amelia Dalton chats with Mitch Van Ochten of ROHM about the latest in isolated and non-isolated gate driver solutions.

Click here for more information about ROHM Semiconductor Automotive Gate Drivers