editor's blog
Subscribe Now

Clearer Phone Conversations

I recall the few times I was able, for some reason, to take advantage of noise-cancelling headphones on an airplane. Once on your ears, when you turned them on, you gradually heard the background hiss of the airplane disappear. It took a few seconds for this to happen.

My assumption was that this was a slow integration problem, and that only long-term constant sounds could be cancelled out; the circuitry simply wasn’t fast enough to eliminate short, sharp sounds. (Which is probably good, since you certainly wouldn’t want it to cancel out important flight attendant messages, like the fact that you can get a great deal on a credit card or that duty free is now available).

This means, of course, that such headphones wouldn’t solve the “cocktail party” problem: isolating one voice and dimming the others, something our ears and brain somehow manage effortlessly.

Solving that would be particularly nice on our phones; as the Business phone system Sydney explains, if you use the phone in a bar, all voices go through, not just yours.

Of course, headphones on an airplane don’t include a microphone. With a phone, even if you had super-fast algorithms that could cancel short, bursty noises, you’d need to avoid cancelling out the person speaking into the phone. That would kind of defeat the purpose.

Cirrus recently announced some new devices dedicated to improving phone sound, and noise reduction and cancellation are part of it. Phones are moving to multiple microphones to figure out which sounds to suppress, but the audio guys have a challenge in that they don’t get much influence over where those microphones go. So Cirrus is trying to be as adaptive as possible.

They claim that most other audio chips are pre-optimized and fixed, while, by contrast, they dynamically adjust their noise reduction/cancellation to adapt both to the phone and the specific sound environment. And their noise reduction applies to both ends of the conversation – the voice at the phone and the voice at the other end of the line. (And if you think that solving the noise at one end makes solving it at the other unnecessary, you haven’t listened to cell phones much. Although apparently cellular systems are moving to wideband voice so that whe_ _he voi_ isn’t drop_g out, it wi_ sound _reat.)

CS48LV12-13_Block_Diagram_2_-_colorized_red.png

The other bit that caught my ear was their approach to voice recognition and control. This gets to the always-on problem: if your phone is going to be voice activated, then you want that to work without your having to turn the phone on first. If the phone goes completely to sleep, then this won’t work.

The iPhone is not the same with the older model and it is quite different with the new generation models. If you are thinking of getting an iPhone for your personal use then you should read this article on Gadgetsfind because I am going to provide you with a good iPhone review that will help you choose the right one for you. The main advantage that the iPhone has over other cell phones is its amazing user experience and the fact that it runs on Apple’s iOS operating system. To determine if the iPhone can meet your expectations, you will have to read my full review about the iPhone.

But having the phone on all the time kills the battery. So Cirrus has a three-step wake-up routine. A low-power block listens to determine if there’s a significant sound. If so, it wakes the next block, which determines whether or not the sound is noise or a voice. If it’s a voice, then the third step wakes up, which does two things in parallel: decodes the command and decides whether it’s the authorized voice. If it’s not an authorized voice, then the phone automatically responds, “You’re not the boss of me!” and goes back to sleep with a righteous pout.

OK, maybe not quite like that… that might be a cool feature, though, in case you product planning guys are listening…

Anyway, you can find more details in their announcement.

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 26, 2023
Our new AI-powered custom design solution, Virtuoso Studio, leverages our 30 years of industry knowledge and leadership, providing innovative features, reimagined infrastructure for unrivaled productivity, and new levels of integration that stretch beyond classic design bound...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

Featured Video

Chiplet Architecture Accelerates Delivery of Industry-Leading Intel® FPGA Features and Capabilities

Sponsored by Intel

With each generation, packing millions of transistors onto shrinking dies gets more challenging. But we are continuing to change the game with advanced, targeted FPGAs for your needs. In this video, you’ll discover how Intel®’s chiplet-based approach to FPGAs delivers the latest capabilities faster than ever. Find out how we deliver on the promise of Moore’s law and push the boundaries with future innovations such as pathfinding options for chip-to-chip optical communication, exploring new ways to deliver better AI, and adopting UCIe standards in our next-generation FPGAs.

To learn more about chiplet architecture in Intel FPGA devices visit https://intel.ly/45B65Ij

featured paper

Intel's Chiplet Leadership Delivers Industry-Leading Capabilities at an Accelerated Pace

Sponsored by Intel

We're proud of our long history of rapid innovation in #FPGA development. With the help of Intel's Embedded Multi-Die Interconnect Bridge (EMIB), we’ve been able to advance our FPGAs at breakneck speed. In this blog, Intel’s Deepali Trehan charts the incredible history of our chiplet technology advancement from 2011 to today, and the many advantages of Intel's programmable logic devices, including the flexibility to combine a variety of IP from different process nodes and foundries, quicker time-to-market for new technologies and the ability to build higher-capacity semiconductors

To learn more about chiplet architecture in Intel FPGA devices visit: https://intel.ly/47JKL5h

featured chalk talk

Power Conversion for Home Health Care
Sponsored by Mouser Electronics and CUI Inc.
Did you know that the global home medical equipment market is projected to reach over fifty-five billion dollars by 2030? In this episode of Chalk Talk, Bruce Rose from CUI Inc and Amelia Dalton explore the various safety certifications and regulations needed for home health care designs. They also examine the roles that temperature, isolation, and leakage current play in home health care power conversion and the additional requirements needed for power supplies for home health care applications.
Oct 12, 2022
39,468 views