editor's blog
Subscribe Now

Clearer Phone Conversations

I recall the few times I was able, for some reason, to take advantage of noise-cancelling headphones on an airplane. Once on your ears, when you turned them on, you gradually heard the background hiss of the airplane disappear. It took a few seconds for this to happen.

My assumption was that this was a slow integration problem, and that only long-term constant sounds could be cancelled out; the circuitry simply wasn’t fast enough to eliminate short, sharp sounds. (Which is probably good, since you certainly wouldn’t want it to cancel out important flight attendant messages, like the fact that you can get a great deal on a credit card or that duty free is now available).

This means, of course, that such headphones wouldn’t solve the “cocktail party” problem: isolating one voice and dimming the others, something our ears and brain somehow manage effortlessly.

Solving that would be particularly nice on our phones; as Cirrus Audio points out, if you use the phone in a bar, all voices go through, not just yours.

Of course, headphones on an airplane don’t include a microphone. With a phone, even if you had super-fast algorithms that could cancel short, bursty noises, you’d need to avoid cancelling out the person speaking into the phone. That would kind of defeat the purpose.

Cirrus recently announced some new devices dedicated to improving phone sound, and noise reduction and cancellation are part of it. Phones are moving to multiple microphones to figure out which sounds to suppress, but the audio guys have a challenge in that they don’t get much influence over where those microphones go. So Cirrus is trying to be as adaptive as possible.

They claim that most other audio chips are pre-optimized and fixed, while, by contrast, they dynamically adjust their noise reduction/cancellation to adapt both to the phone and the specific sound environment. And their noise reduction applies to both ends of the conversation – the voice at the phone and the voice at the other end of the line. (And if you think that solving the noise at one end makes solving it at the other unnecessary, you haven’t listened to cell phones much. Although apparently cellular systems are moving to wideband voice so that whe_ _he voi_ isn’t drop_g out, it wi_ sound _reat.)

CS48LV12-13_Block_Diagram_2_-_colorized_red.png

The other bit that caught my ear was their approach to voice recognition and control. This gets to the always-on problem: if your phone is going to be voice activated, then you want that to work without your having to turn the phone on first. If the phone goes completely to sleep, then this won’t work.

But having the phone on all the time kills the battery. So Cirrus has a three-step wake-up routine. A low-power block listens to determine if there’s a significant sound. If so, it wakes the next block, which determines whether or not the sound is noise or a voice. If it’s a voice, then the third step wakes up, which does two things in parallel: decodes the command and decides whether it’s the authorized voice. If it’s not an authorized voice, then the phone automatically responds, “You’re not the boss of me!” and goes back to sleep with a righteous pout.

OK, maybe not quite like that… that might be a cool feature, though, in case you product planning guys are listening…

Anyway, you can find more details in their announcement.

Leave a Reply

featured blogs
Dec 1, 2020
If you'€™d asked me at the beginning of 2020 as to the chances of my replicating an 1820 Welsh dresser, I would have said '€œzero,'€ which just goes to show how little I know....
Dec 1, 2020
More package designers these days, with the increasing component counts and more complicated electrical constraints, are shifting to using a front-end schematic capture tool. As with IC and PCB... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

AI SoC Chats: Protecting Data with Security IP

Sponsored by Synopsys

Understand the threat profiles and security trends for AI SoC applications, including how laws and regulations are changing to protect the private information and data of users. Secure boot, secure debug, and secure communication for neural network engines is critical. Learn how DesignWare Security IP and Hardware Root of Trust can help designers create a secure enclave on the SoC and update software remotely.

Click here for more information about Security IP

featured paper

Exploring advancements in industrial and automotive markets with 60-GHz radar

Sponsored by Texas Instruments

The industrial and automotive markets have a tremendous need for innovative sensing technologies to help buildings, cities and automobiles sense the world around them and make more intelligent decisions.

Click here to read the article

Featured Chalk Talk

Amplifiers & Comparators Designed for Low Power, Precision

Sponsored by Mouser Electronics and ON Semiconductor

When choosing amplifiers and comparators for low-power, high-precision applications, it pays to have a broad understanding of the latest technology in op amps. There are new types of devices with significant advantages over the traditional go-to parts. In this episode of Chalk Talk, Amelia Dalton chats with Namrata Pandya of ON Semiconductor about choosing the best op amp for your application.

Click here for more information about ON Semiconductor High Performance CMOS Operational Amplifiers