editor's blog
Subscribe Now

IoT or M2M or Connected Device?

In various places where people track and discuss progress in the world of interconnected things, there is a surprising amount of debate over the meanings of terms that might otherwise be taken for granted.

Most often, you see a debate over the “internet of things” (IoT) as compared to “machine to machine” (M2M). And, in fact, M2M technology has been around for a long time, so some of the tone can be annoyance: “Hey folks, we’ve been doing this for a long time, there’s nothing new, and it’s got a name already : M2M, not IoT. Quit hijacking and hyping our technology.”

Well, I’m going to join the fray here with my opinion, and you can flay me if you disagree. (Just be gentle.) I’m going to toss in one other phrase that I saw included in one of the debates: the seemingly innocuous “connected device” (it’s the innocuous ones that all too often end up being not quite so innocent).

Let’s start with that one. A “connected device,” in my eyes, is simply one that can access the Internet. I suppose it doesn’t have to be the internet – it could be some private server or something else. But… probably the Internet. The thing is, the device isn’t really talking to any other device; it’s just providing you access to information that resides somewhere outside itself.

The other two terms deal with devices that go online to interact with other devices. This is where most of the debate is. Much of the technology used for the IoT could well be the same as that used for M2M, so there’s room for lots of overlap there.

I think that if the IoT were really only about things talking to things, then you could argue that it was more or less the same as M2M. But in its more typical use cases, the IoT tends to involve people more than M2M does. The IoT is more like person-to-cloud-to-machine. It’s the person and cloud that feel different to me.

Of course, M2M must, in the limit, involve people. But a more classic industrial implementation of M2M would seem to consist primarily of machines and a local or private server (or server farm – and, despite that fact that such farms have been around forever, you’ll even see them being rebranded as “private clouds”). A factory or other industrial process can hum along nicely, with the Grand Algorithm keeping things optimal, all under the watchful eye of a Homer Simpson (or a more suitably qualified person).

That feels very machine-centric to me, as opposed to the refrigerator that can detect when it’s out of something so that some company can send you an ad on your phone. The IoT model feels to me like it’s more human-centric (or should be).

So:

  • Connected device: just a device with access to outside information
  • M2M: machine-centric network where the endpoints are mostly machines
  • IoT: mixture of machines and public cloud and people doing things that serve the needs of people more than they serve the needs of machines.

OK… bash away. Heck, you’d wonder if it even matters, but it’s amazing how much energy people can devote to this. I’m gonna go put on my flak jacket now.

Leave a Reply

featured blogs
Oct 4, 2022
We share 6 key advantages of cloud-based IC hardware design tools, including enhanced scalability, security, and access to AI-enabled EDA tools. The post 6 Reasons to Leverage IC Hardware Development in the Cloud appeared first on From Silicon To Software....
Oct 4, 2022
Anyone designing a data center faces complex thermal management challenges . Yes, there's a large amount of electrical power required, but the other side of that coin is that almost all the power gets turned into heat, putting a tremendous strain on the airflow and cooling sy...
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Mission Critical Electrical Controls

Sponsored by Mouser Electronics and Littelfuse

If you are working on a mission-critical design, there is a very important list of requirements that you will need to consider for your electromechanical controls including how well they have been tested, availability of inventory, and the quality of the components. In this episode of Chalk Talk, Amelia Dalton chats with John Saathoff from Littelfuse electromechanical solutions offered by Hartland Controls, the benefits Hartland brings to the table when it comes to mission-critical designs, and how you can get started using Hartland Controls for your next design.

Click here for more information about Hartland Controls from Littelfuse