editor's blog
Subscribe Now

IoT or M2M or Connected Device?

In various places where people track and discuss progress in the world of interconnected things, there is a surprising amount of debate over the meanings of terms that might otherwise be taken for granted.

Most often, you see a debate over the “internet of things” (IoT) as compared to “machine to machine” (M2M). And, in fact, M2M technology has been around for a long time, so some of the tone can be annoyance: “Hey folks, we’ve been doing this for a long time, there’s nothing new, and it’s got a name already : M2M, not IoT. Quit hijacking and hyping our technology.”

Well, I’m going to join the fray here with my opinion, and you can flay me if you disagree. (Just be gentle.) I’m going to toss in one other phrase that I saw included in one of the debates: the seemingly innocuous “connected device” (it’s the innocuous ones that all too often end up being not quite so innocent).

Let’s start with that one. A “connected device,” in my eyes, is simply one that can access the Internet. I suppose it doesn’t have to be the internet – it could be some private server or something else. But… probably the Internet. The thing is, the device isn’t really talking to any other device; it’s just providing you access to information that resides somewhere outside itself.

The other two terms deal with devices that go online to interact with other devices. This is where most of the debate is. Much of the technology used for the IoT could well be the same as that used for M2M, so there’s room for lots of overlap there.

I think that if the IoT were really only about things talking to things, then you could argue that it was more or less the same as M2M. But in its more typical use cases, the IoT tends to involve people more than M2M does. The IoT is more like person-to-cloud-to-machine. It’s the person and cloud that feel different to me.

Of course, M2M must, in the limit, involve people. But a more classic industrial implementation of M2M would seem to consist primarily of machines and a local or private server (or server farm – and, despite that fact that such farms have been around forever, you’ll even see them being rebranded as “private clouds”). A factory or other industrial process can hum along nicely, with the Grand Algorithm keeping things optimal, all under the watchful eye of a Homer Simpson (or a more suitably qualified person).

That feels very machine-centric to me, as opposed to the refrigerator that can detect when it’s out of something so that some company can send you an ad on your phone. The IoT model feels to me like it’s more human-centric (or should be).

So:

  • Connected device: just a device with access to outside information
  • M2M: machine-centric network where the endpoints are mostly machines
  • IoT: mixture of machines and public cloud and people doing things that serve the needs of people more than they serve the needs of machines.

OK… bash away. Heck, you’d wonder if it even matters, but it’s amazing how much energy people can devote to this. I’m gonna go put on my flak jacket now.

Leave a Reply

featured blogs
Jun 6, 2023
Learn about our PVT Monitor IP, a key component of our SLM chip monitoring solutions, which successfully taped out on TSMC's N5 and N3E processes. The post Synopsys Tapes Out SLM PVT Monitor IP on TSMC N5 and N3E Processes appeared first on New Horizons for Chip Design....
Jun 6, 2023
At this year's DesignCon, Meta held a session on '˜PowerTree-Based PDN Analysis, Correlation, and Signoff for MR/AR Systems.' Presented by Kundan Chand and Grace Yu from Meta, they talked about power integrity (PI) analysis using Sigrity Aurora and Power Integrity tools such...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....

featured video

Automatically Generate, Budget and Optimize UPF with Synopsys Verdi UPF Architect

Sponsored by Synopsys

Learn to translate a high-level power intent from CSV to a consumable UPF across a typical ASIC design flow using Verdi UPF Architect. Power Architect can focus on the efficiency of the Power Intent instead of worrying about Syntax & UPF Semantics.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Peltier Modules
Do you need precise temperature control? Does your application need to be cooled below ambient temperature? If you answered yes to either of these questions, a peltier module may be the best solution for you. In this episode of Chalk Talk, Amelia Dalton chats with Rex Hallock from CUI Devices about the limitations and unique benefits of peltier modules, how CUI Devices’ arcTEC™ structure can make a big difference when it comes to thermal stress and fatigue of peltier modules, and how you can get started using a peltier module in your next design.
Jan 3, 2023
20,454 views