editor's blog
Subscribe Now

UV Index Sensor

Have you been out in the sun too long?

OK, yeah, not really the right time of year to ask that question north of the equator… Especially around here in the Northwest, under a thick blanket of puffy gray.

So the answer is probably, “No.” But, come springtime, you’re going to want to get all of that flesh exposed to suck up those rays it’s been missing during the Dark Months. So… how do you know how long to stay out? Other than the telltale pink that indicates you’re too late?

What if your wearable device could measure that for you? That’s the goal of a couple of new Silicon Labs optical sensors: the Si1132, combined with an ambient light sensor (ALS), and the Si1145/6/7 devices, which include and ALS, IR proximity detector, and one or more LED drivers. All in clear 2×2 mm2 packages.

To some extent, you might just say that this is just a photodetector that responds in the UV range. But you’d then look at the block diagram and notice that there’s no UV photodiode shown.

si1132-BD_reduced.png

I asked about that, and it turns out that their visible light detector also responds to UVA and UVB, and they use proprietary algorithms to extract the UV index from them. You could do the same thing today (if you had the algorithms), but you’d need to get a plain UV detector and do the index calculation yourself using separate devices. With these devices, it’s integrated, and what you read out is the pre-calculated index.

Note also that there’s nothing in that diagram for accumulating exposure. That’s because the device doesn’t actually do that; it just gives a real-time UV index reading that the system designer can accumulate to determine overall exposure.

The LED drivers in the Si1145/6/7 series are summarized as using the 1-LED version for motion detection, 2 LEDs for 2D gesture recognition, and 3 LEDs for 3D gesture recognition. The LEDs are driven under control of this device, while the device senses the response. It also has its own IR emitter for proximity checking.

Si114x-BD_reduced.png

You can find more information in their release.

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Beyond the SOT23: The Future of Smaller Packages

Sponsored by Mouser Electronics and Nexperia

There is a megatrend throughout electronic engineering that is pushing us toward smaller and smaller components and printed circuit boards. In this episode of Chalk Talk, Tom Wolf from Nexperia and Amelia Dalton explore the benefits of a smaller package size for the SOT23. They investigate how new package sizes for this SMD can lower your BOM, decrease your board space and more.

Click here for more information about Nexperia SOT23 Surface-Mounted Package Products