editor's blog
Subscribe Now

Smoother IP to SoC Prototyping

Synopsys recently announced their HAPS DX (Developer eXpress) product, and the story surrounding that release spoke to many of the things that Synopsys sees as good in their prototyping solution. But a few questions clarified that many of those things have already been available in the existing HAPS offerings. So what’s the key new thing that HAPS DX enables?

Turns out it has to do with the distinction between designing IP and designing an SoC. And this is actually a theme I’m seeing in other contexts as well.

IP started out as mini-designs that were built with the same tools as a full-up chip (or FPGA). Frankly, for a lot of IP companies, the products on the shelf probably wouldn’t have worked for any arbitrary application: they’d need tweaking first. So these products were largely a way to get consulting contracts that would modify the shrunk-wrap IP into something that included all the specifics the client needed.

Even then, folks looked askance at IP, preferring to do it themselves for NIH and control reasons as well as due to the illusion that inside folks were free (or at least already paid for). IP company survival was not a given.

Today it’s assumed that any designer of an SoC will spend a lot of effort (and money) integrating IP; it’s no longer cool to invent a new wheel. But this has changed the nature of design. While full chip design used to be just a bigger version of the process used to design IP, now IP is more about low-level gate design and SoCs are more about assembly (with lower-level design where absolutely necessary).

So now there’s more of a break between where the IP design stops and the SoC design starts, and tools are starting to reflect the challenges of this change of methodology. And that’s the main benefit to the HAPS DX product: it allows for a more seamless transition from IP design to SoC design.

Before, one person might design and verify the IP, and the user then started from scratch, redoing much of the work that the original IP designer did when prototyping. HAPS DX, by contrast, is supposed to help bridge that gap, allowing a more seamless move from IP to SoC with data generated in the IP phase pushed forward for re-use when that IP is integrated.

You can see more of what they’re saying in their announcement.

Leave a Reply

featured blogs
Aug 12, 2020
Samtec has been selling its products online since the early 2000s, the very early days of eCommerce. We’ve been through a couple of shopping cart iterations since then. Before this recent upgrade, Samtec.com had been running on a cart system that was built in 2011. It w...
Aug 11, 2020
While Cadence System in Package (SiP) is '€“ and continues to be '€“ one of the most complete solutions for package design, the Virtuoso RF Solution gives access to a constantly increasing set of package... [[ Click on the title to access the full blog on the Cadence Com...
Aug 11, 2020
Making a person appear to say or do something they did not actually say or do has the potential to take the war of disinformation to a whole new level....
Aug 7, 2020
[From the last episode: We looked at activation and what they'€™re for.] We'€™ve talked about the structure of machine-learning (ML) models and much of the hardware and math needed to do ML work. But there are some practical considerations that mean we may not directly us...

Featured Video

Are You Listening?

Sponsored by Mouser Electronics

Inspiration doesn’t stick to a schedule. Luckily, creativity is a natural stimulant. Let Mouser Electronics help you on your way.

More information

Featured Paper

Computational Software: 4 Ways It is Transforming System Design & Hardware Design

Sponsored by BestTech Views

Cadence President Anirudh Devgan shares his detailed insights on Computational Software. Anirudh provides a clear definition of computational software, and four specific ways computational software is transforming system design & hardware design -- including highly distributed compute, reduced memory footprints, co-optimization, and machine learning applications.

Click here for the white paper.

Featured Chalk Talk

Small Cell 5G Systems

Sponsored by Mouser Electronics and Qorvo

5G brings a bewildering array of issues in small cell design - with small cells stepping in to handle the heavy lifting in the numerous places macro cells can’t reach. In this episode of Chalk Talk, Amelia Dalton chats with Suma Kapilavai of Qorvo about tackling the variety of massive MIMO and beamforming challenges that 5G implementation brings to small cell design.

Click here for more information about Qorvo Small Cell Solutions