editor's blog
Subscribe Now

Tree Frogs Help Graphene Grow

Growing high-quality graphene for use on wafers is hard. Chemical vapor deposition (CVD) is the favored approach, but no one has perfected the ability to grow it directly onto the oxide surface of a wafer.

It’s much easier to grow it on a sheet of copper and then transfer it over. But that transfer step can be tricky, and copper isn’t a perfectly uniform, crystalline material either. So defects can easily result.

One obvious trick might be to put copper on the oxide, grow the graphene on that, and then etch the copper away, leaving the graphene on the oxide surface. This technically can work, but the graphene tends to lift off the surface before it can be secured in place.

So… it would be useful to find a way to hold that graphene layer before it’s baked down. And if you were looking for a way to get something to adhere to a surface, where would you look in nature for ideas?

Why, tree frogs, of course!

Tree_frog_red.jpg

 

Image courtesy W.A. Djatmiko (Wikipedia)

 

It turns out that tree frogs stay attached to underwater leaves thanks to nano-sized bubbles and capillary bridges between leaf and foot. Some beetles do a similar trick.

 

Well, this idea has now been transferred to graphene. Prior to laying down the copper, the wafer surface is treated with nitrogen plasma. Copper is then sputtered on and CVD deposits the carbon. The carbon is then etched, and, during that process, nano-bubbles form, creating capillary bridges. These hold the graphene in place as the copper disappears.

 

A final bake step secures the graphene to the wafer and eliminates the bubbles and capillaries.

 

You can read more about this in their paper, but it’s behind a paywall.

Leave a Reply

featured blogs
Aug 7, 2020
I love the clickety-clackety sounds of split flap displays, but -- in the case of this kinetic clock -- I'€™m enthralled by its sedately silent revolutions and evolutions....
Aug 7, 2020
HPC. FinTech. Machine Learning. Network Acceleration. These and many other emerging applications are stressing data center networks. Data center architectures evolve to ensure optimal resource utilization and allocation. PECFF (PCIe® Enclosure Compatible Form Factor) was dev...
Aug 7, 2020
[From the last episode: We looked at activation and what they'€™re for.] We'€™ve talked about the structure of machine-learning (ML) models and much of the hardware and math needed to do ML work. But there are some practical considerations that mean we may not directly us...
Aug 7, 2020
This is my second update post where I cover things that I have covered before, and where there is some news, but no enough to make a completely new post. The first update was Weekend Update .... [[ Click on the title to access the full blog on the Cadence Community site. ]]...

featured video

Product Update: Protect IoT SoCs with DesignWare OTP NVM IP

Sponsored by Synopsys

Join Krishna Balachandran in this discussion on Synopsys DesignWare OTP NVM IP, including security, performance, power, and cost considerations. With more than 12 years of development and deployment by 500+ customers, Synopsys is the leader in antifuse-based OTP NVM IP.

Click here for more information about Synopsys DesignWare OTP NVM IP

Featured Paper

Improving Performance in High-Voltage Systems With Zero-Drift Hall-Effect Current Sensing

Sponsored by Texas Instruments

Learn how major industry trends are driving demands for isolated current sensing, and how new zero-drift Hall-effect current sensors can improve isolation and measurement drift while simplifying the design process.

Click here for more information

Featured Chalk Talk

Maxim's First Secure Micro with ChipDNA PUF Technology

Sponsored by Mouser Electronics and Maxim Integrated

Most applications today demand security, and that starts with your microcontroller. In order to get a truly secure MCU, you need a root of trust such as a physically unclonable function (PUF). In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis of Maxim Integrated about how the Maxim MAX32520 MCU with PUF can secure your next design.

Click here for more info about Amphenol RF 5G Wireless Connectors