editor's blog
Subscribe Now

Micro-Windmill Surprise

It’s one of those good problems.

You’ve been doing some exploratory MEMS work. Your main focus is biomedical – implants for dealing with prostate cancer. Silicon is too brittle, so you do some exploration with a foundry to experiment with different structures and materials. A nickel alloy looks interesting – more forgiving than silicon (at the expense of a lower Young’s modulus). And there’s some extra space on the die.

One a whim, you and a co-researcher half-jokingly discuss putting a windmill on there. During the discussion, she is watching her daughter play with a pinwheel. Inspiration strikes, and overnight she completes a design that goes onto the die. Despite the auspicious name of the MEMS company you’re working with, WinMEMS (one letter away from WindMEMS), you think it probably won’t work.

Only… it does work. Not only does it function as expected, but someone accidentally drops some on the ground – and they still work.

What do you do now?

Most academics would publish. But here’s the deal: you’ve been burned before by companies that have leveraged your work with nothing coming back to you. And universities don’t like this either. So you don’t publish: you patent. And you delay telling the world about it for a couple months until the lawyers relax.

And then you issue a press release.

And then you give up any hope of getting any work done until the phone stops ringing.

This has been life for Dr. Jung-chih Chiao and Dr. Smitha Rao at the University of Texas in Arlington. They’ve been totally sidetracked by the surprising (to him) success of this little side project.

Because no paper has been published, there’s no end of questions about how they achieved their results. There were some pictures, but no details, especially about such critical aspects as, how do they convert the motion into electrical energy? I discussed that with Dr. Chiao, but apparently I didn’t ply him with enough drink to get him to give up the secret. So it remains a secret.

I was actually the 20th person to talk to him. They’ve been bombarded not just with press, but with companies wanting in on the action. They’re not just calling him; they’re calling colleagues as well. So they’re remaining tight-lipped for now.

He’s pretty confident in the design that they’ve done – they’ve aimed for simplicity in order to ensure reliability, but there are still issues to be solved. The two main ones are figuring out how to keep dust from mucking up the works and new ways of countering stiction.

They will be looking for commercialization partners. He sees the university’s role as solving the basic physics, including the two problems just mentioned. There will be other changes before anything goes into full production, but he sees the partner company doing that work. And he’s confident that this thing is manufacturable. Depending on funding, he sees this as being completed on about a one-year horizon.

After his work on this has been completed, he’s looking at possibly putting together a simulation tool. Depending on where you want to place the micro-windmills – cars, bridges, wherever – you may want to optimize the design. A simulation tool would make that possible.

For right now, it’s more basic: the phone needs to quiet down so they can get back to doing actual research.

And we’re still going to have to wait to figure out how this all works.

Leave a Reply

featured blogs
Jan 25, 2021
A mechanical look at connector skew in your systems.  Electrical and Mechanical requirements collide when looking at interconnects in your electrical system. What can you do about it, how do you plan for it, and how do you pick the most rugged solution that still carries...
Jan 25, 2021
There is a whole portfolio of official "best of CES" awards, 14 of them this year. Of course, every publication lists its own best-of list, but the official CES awards are judged by... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

Featured Chalk Talk

RX23W Bluetooth

Sponsored by Mouser Electronics and Renesas

Adding Bluetooth to your embedded design can be tricky for IoT developers. Bluetooth 5 brings a host of new capabilities that make Bluetooth integration more compelling than ever. In this episode of Chalk Talk, Amelia Dalton chats with Michael Sarpa from Renesas about the cool capabilities of Bluetooth 5, and how you can easily integrate them into your next project.

More information about Renesas Electronics RX23W 32-bit Microcontrollers