editor's blog
Subscribe Now

Invensense Microphone Skips a Step

The number of microphone output options just got bigger by one.

Typically, there have been analog microphones, where you get a real-deal audio signal to play with, or digital microphones. The question is, for the digital versions, what does that mean? How are the 1s and 0s to be interpreted?

Says Invensense, up to their latest release, all digital microphones take the audio signal, digitize it, and then run that signal into a codec that creates a PDM signal. For anyone not steeped in this stuff (including yours truly), PDM is “pulse density modulation.” In other words, the number of pulses-per-unit-time relates to the value being communicated. More pulses = higher number.

There are actually other potentially confusing PxM formats. PCM – pulse code modulation – is more or less the strict sampling result of an analog signal. It’s got a role in storing music on CDs, for example. PWM – pulse width modulation – is what you get if you take PDM and, instead of having discrete pulses per unit time, you abut them – that is, instead of five separate unit pulses, for example, you run them together to create one pulse five units long.

Most systems expect PDM signals in I2S format from their digital microphones. And I’ll be honest: when I first posted this, my mind mapped I2S to I2C.  Which is incorrect. I2S is used to interconnect audio devices. Invensense sees an opportunity with some systems that take audio in but have no audio out. May sound a bit strange, since most audio is done for the pleasure of our ears. But, increasingly, we’ll be able to use sound to control our systems. So a smart watch or some other kind of wearable gadget might respond to our voice commands or other audio cues. They have no speaker, so they’re not reproducing sound for us; they just consume it.

And, apparently, such devices don’t need PDM. So, using typical digital microphones, they’d have to take the encoded data and decode it. Invensense has a new option for them: a microphone that simply skips the encoding step. What you get is the direct filtered output of the ADC, formatted for I2S. The idea is that this simplifies the design of the gadget.

Figure.png

 

You can get more info in their announcement of solutions for always-on wearables.

Meanwhile, the next day they also announced a new analog microphone…

 

[Editorial note: this was updated to correct the I2C vs. I2S error, as noted in the above.]

Leave a Reply

featured blogs
Sep 5, 2024
I just discovered why my wife sees our green watering can as being blue (and why she says I see our blue watering can as being green)...

featured paper

A game-changer for IP designers: design-stage verification

Sponsored by Siemens Digital Industries Software

In this new technical paper, you’ll gain valuable insights into how, by moving physical verification earlier in the IP design flow, you can locate and correct design errors sooner, reducing costs and getting complex designs to market faster. Dive into the challenges of hard, soft and custom IP creation, and learn how to run targeted, real-time or on-demand physical verification with precision, earlier in the layout process.

Read more

featured chalk talk

Machine Learning on the Edge
Sponsored by Mouser Electronics and Infineon
Edge machine learning is a great way to allow embedded devices to run applications that can collect sensor data and locally process that data. In this episode of Chalk Talk, Amelia Dalton and Clark Jarvis from Infineon explore how the IMAGIMOB Studio, ModusToolbox™ Software, and PSoC and AURIX™ microcontrollers can help you develop a custom machine learning on the edge application from scratch. They also investigate how the IMAGIMOB Studio can help you easily develop and deploy AI/ML models and the benefits that the PSoC™ 6 Artificial Intelligence Evaluation Kit will bring to your next machine learning on the edge application design process.
Aug 12, 2024
14,730 views