editor's blog
Subscribe Now

Haptics in a Microcontroller?

TI caught my eye when they released a microcontroller that they said was “haptics-enabled.” A few seconds of thought convinced me that this concept needed some unpacking.

Haptics is all about devices providing feedback through some kind of touch mechanism. It could be as passive as raised bumps telling you that your fingers are in the right place, or it could be through vibrations or other active events that you can feel. It’s a hot topic, one we’ll probably be seeing much more of.

But… TI’s new MSP430TCH5E microcontroller is… a microcontroller. How can that generate haptic feedback? Does it have a specific hardware module for driving a specific vibratory engine? Seems unlikely, since haptics has lots of ways of being implemented; there’s no “mainstream” mechanism that’s suitable for hardening. Is there?

The release does talk of software libraries and SDKs. Could this be just about software? But… if so, why is it unique to this microcontroller?

I checked in with them, and the details of whatever the answer is are confidential; they’re not saying. But it does have to do with protecting IP. So my take on it is that this is a microcontroller/software bundle that includes haptic libraries. And you can’t use those libraries on other microcontrollers. Why not? Not sure… it could be the license: to get this you most likely have to promise to play by their rules. And if the solution is worth it, most upstanding businesses are not willing to risk legal hassles by playing games trying to port to another processor.

But it may also be that there’s some kind of hardware lock – something specifically put in place that the libraries interrogate to ensure that they’re running on a designated platform. Since, as far as I know, this specific microcontroller isn’t available without the haptics library, that may be the case. (It would be an easy design strategy to have a basic platform that simply has an ID that can be changed with one mask to make the device “unique.”)

I don’t know if this is what they did, but it would certainly be doable, and would add some practical teeth to the license. And if the low-level code is in machine language, it would be really hard to hack.

You can read more about what you can do with this in their announcement. And if you have any other clues about what’s going on, please post in the comments.

Leave a Reply

featured blogs
Jan 17, 2020
I once met Steve Wozniak, or he once met me (it's hard to remember the nitty-gritty details)....
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...
Jan 16, 2020
While Samtec started as a connector company with a focus on two-piece, pin-and-socket board stacking systems, High-Speed Board Stacking connectors and High-Speed Cable Assemblies now make up a significant portion of our sales. To support development in this area, in December ...
Jan 16, 2020
Betting on Hydrogen-Powered Cars On-demand DRC within P&R cuts closure time in half for MaxLinear Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools Automating the pain out of clock domain crossing verification Mentor unpacks LVS and LVL iss...

Featured Video

Automotive Trends Driving New SoC Architectures -- Synopsys

Sponsored by Synopsys

Today’s automotive trends are driving new design requirements for automotive SoCs targeting ADAS, gateways, connected cars and infotainment. Find out why it is essential to use pre-designed, pre-verified, reusable automotive-optimized IP to meet such new requirements and accelerate design time.

Click here for more information about DesignWare IP for Automotive