editor's blog
Subscribe Now

Haptics in a Microcontroller?

TI caught my eye when they released a microcontroller that they said was “haptics-enabled.” A few seconds of thought convinced me that this concept needed some unpacking.

Haptics is all about devices providing feedback through some kind of touch mechanism. It could be as passive as raised bumps telling you that your fingers are in the right place, or it could be through vibrations or other active events that you can feel. It’s a hot topic, one we’ll probably be seeing much more of.

But… TI’s new MSP430TCH5E microcontroller is… a microcontroller. How can that generate haptic feedback? Does it have a specific hardware module for driving a specific vibratory engine? Seems unlikely, since haptics has lots of ways of being implemented; there’s no “mainstream” mechanism that’s suitable for hardening. Is there?

The release does talk of software libraries and SDKs. Could this be just about software? But… if so, why is it unique to this microcontroller?

I checked in with them, and the details of whatever the answer is are confidential; they’re not saying. But it does have to do with protecting IP. So my take on it is that this is a microcontroller/software bundle that includes haptic libraries. And you can’t use those libraries on other microcontrollers. Why not? Not sure… it could be the license: to get this you most likely have to promise to play by their rules. And if the solution is worth it, most upstanding businesses are not willing to risk legal hassles by playing games trying to port to another processor.

But it may also be that there’s some kind of hardware lock – something specifically put in place that the libraries interrogate to ensure that they’re running on a designated platform. Since, as far as I know, this specific microcontroller isn’t available without the haptics library, that may be the case. (It would be an easy design strategy to have a basic platform that simply has an ID that can be changed with one mask to make the device “unique.”)

I don’t know if this is what they did, but it would certainly be doable, and would add some practical teeth to the license. And if the low-level code is in machine language, it would be really hard to hack.

You can read more about what you can do with this in their announcement. And if you have any other clues about what’s going on, please post in the comments.

Leave a Reply

featured blogs
Apr 13, 2021
We explain the NHTSA's latest automotive cybersecurity best practices, including guidelines to protect automotive ECUs and connected vehicle technologies. The post NHTSA Shares Best Practices for Improving Autmotive Cybersecurity appeared first on From Silicon To Software....
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

LED Lighting Solutions

Sponsored by Mouser Electronics and Amphenol ICC

LED lighting is revolutionizing lighting design. Engineers now need to consider a host of issues such as power consumption, spectrum, form factor, and reliability. In this episode of Chalk Talk, Amelia Dalton chats with Peter Swift from Amphenol ICC about the latest in LED lighting technology, and solutions for indoor and outdoor applications.

Click here for more about Amphenol Commercial Lighting Solutions ICC