editor's blog
Subscribe Now

Haptics in a Microcontroller?

TI caught my eye when they released a microcontroller that they said was “haptics-enabled.” A few seconds of thought convinced me that this concept needed some unpacking.

Haptics is all about devices providing feedback through some kind of touch mechanism. It could be as passive as raised bumps telling you that your fingers are in the right place, or it could be through vibrations or other active events that you can feel. It’s a hot topic, one we’ll probably be seeing much more of.

But… TI’s new MSP430TCH5E microcontroller is… a microcontroller. How can that generate haptic feedback? Does it have a specific hardware module for driving a specific vibratory engine? Seems unlikely, since haptics has lots of ways of being implemented; there’s no “mainstream” mechanism that’s suitable for hardening. Is there?

The release does talk of software libraries and SDKs. Could this be just about software? But… if so, why is it unique to this microcontroller?

I checked in with them, and the details of whatever the answer is are confidential; they’re not saying. But it does have to do with protecting IP. So my take on it is that this is a microcontroller/software bundle that includes haptic libraries. And you can’t use those libraries on other microcontrollers. Why not? Not sure… it could be the license: to get this you most likely have to promise to play by their rules. And if the solution is worth it, most upstanding businesses are not willing to risk legal hassles by playing games trying to port to another processor.

But it may also be that there’s some kind of hardware lock – something specifically put in place that the libraries interrogate to ensure that they’re running on a designated platform. Since, as far as I know, this specific microcontroller isn’t available without the haptics library, that may be the case. (It would be an easy design strategy to have a basic platform that simply has an ID that can be changed with one mask to make the device “unique.”)

I don’t know if this is what they did, but it would certainly be doable, and would add some practical teeth to the license. And if the low-level code is in machine language, it would be really hard to hack.

You can read more about what you can do with this in their announcement. And if you have any other clues about what’s going on, please post in the comments.

Leave a Reply

featured blogs
May 25, 2022
Explore the world of point-of-care (POC) anatomical 3D printing and learn how our AI-enabled Simpleware software eliminates manual segmentation & landmarking. The post How Synopsys Point-of-Care 3D Printing Helps Clinicians and Patients appeared first on From Silicon To...
May 25, 2022
There are so many cool STEM (science, technology, engineering, and math) toys available these days, and I want them all!...
May 24, 2022
By Melika Roshandell Today's modern electronic designs require ever more functionality and performance to meet consumer demand. These requirements make scaling traditional, flat, 2D-ICs very... ...
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...

featured video

Synopsys PPA(V) Voltage Optimization

Sponsored by Synopsys

Performance-per-watt has emerged as one of the highest priorities in design quality, leading to a shift in technology focus and design power optimization methodologies. Variable operating voltage possess high potential in optimizing performance-per-watt results but requires a signoff accurate and efficient methodology to explore. Synopsys Fusion Design Platform™, uniquely built on a singular RTL-to-GDSII data model, delivers a full-flow voltage optimization and closure methodology to achieve the best performance-per-watt results for the most demanding semiconductor segments.

Learn More

featured paper

5 common Hall-effect sensor myths

Sponsored by Texas Instruments

Hall-effect sensors can be used in a variety of automotive and industrial systems. Higher system performance requirements created the need for improved accuracy and more integration – extending the use of Hall-effect sensors. Read this article to learn about common Hall-effect sensor misconceptions and see how these sensors can be used in real-world applications.

Click to read more

featured chalk talk

BLDC Applications and Product Solutions

Sponsored by Mouser Electronics and onsemi

In many ways, Industry 4.0 is encouraging innovation in the arena of brushless motor design. In this episode of Chalk Talk, Amelia Dalton chats with CJ Waters of onsemi about the components involved in brushless motor design and how new applications like collaborative robots can take advantage of the benefits of BLDCs.

Click here for more information about onsemi Brushless DC Motor Control Solutions