editor's blog
Subscribe Now

What Might Make an Accelerometer More Robust?

Last month STMicroelectronics announced a new accelerometer “engineered to withstand stresses of modern mobile life.” They see those stresses arising from increasingly thinner phones and the mechanical and thermal challenges they cause. They called out board bending as a particular challenge to the mechanical integrity of the works inside the accelerometer package.

So how do you improve the mechanical structure of the accelerometer to do this? First, it helps to realize that there are two structures in ST’s accelerometers. One operates in-plane and provides both x and y acceleration information. A separate structure is used for the out-of-plane z axis acceleration. On older models, these two structures were set side by side.

To illustrate how things might be improved, they made reference to stability in an airplane, even though the comparison can’t be taken too literally. If you want the smoothest ride in the plane, you sit in the middle, between the wings. Especially to the extent that the middle has the least stress and that stresses radiate out from that, there’s more disturbance (bumpiness) at the extremes – the wingtips and nose and tail – than in the middle.

It turns out that the z-axis accelerometer is the most sensitive, so improving it was a goal. So they moved it to the middle of the die layout rather than having it off on one side. And where would the x/y structure go if the z structure is hogging the middle? Symmetry is achieved by splitting the x/y structure and putting one half on either side of the center z structure. The two halves become the “wings.”

The other improvement was to double the number of anchoring points on the z structure from 2 to 4. This reduced the stresses on those points, making them less subject to failure.

You can find more details on the performance of this acceleromete

Leave a Reply

featured blogs
Sep 26, 2021
https://youtu.be/Ivi2dTIcm9E Made at my garden gate (camera Carey Guo) Monday: Ten Lessons from Three Generations of Google TPUs Tuesday: At a Digital Crossroads Wednesday: Announcing Helium, Hybrid... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 24, 2021
Wi-Fi, NB-IoT, Bluetooth, LoRaWAN... This webinar will help you to choose the appropriate connectivity protocol for your IoT application....
Sep 23, 2021
The GIRLS GO Engineering scholarship provides opportunities for women in tech and fosters diversity in STEM; see the winners of our 2021 engineering challenge! The post GIRLS GO Engineering! Empowers Our Next-Gen Women in Tech appeared first on From Silicon To Software....
Sep 23, 2021
The Global Environment Facility Small Grants Programme (GEF SGP), implemented by the United Nations Development Programme, is collaborating with the InnovateFPGA contest. Showcase your  skills with Intel Edge-Centric FPGAs and help develop technical solutions that reduce env...

featured video

Intel Architecture Day 2021: Data Center - Infrastructure Processing Unit

Sponsored by Intel

Intel unveiled its biggest architectural shifts in a generation for CPUs, GPUs and IPUs to satisfy the crushing demand for more compute performance at Architecture Day 2021. Guido Appenzeller, Chief Technology Officer of Intel's Data Platforms Group explains how the IPU's design enables cloud and communication service providers to reduce overhead and free up performance for central processing units.

Click here to learn more

featured paper

Seamlessly connect your world with 16 new wireless MCUs for the 2.4-GHz and Sub-1-GHz bands

Sponsored by Texas Instruments

Low-power wireless microcontroller (MCU) shipments are expected to double over the next four years to more than 4 billion units. This massive influx of MCUs will result in more opportunities for wireless connectivity than ever before, with growth across a wide range of applications and technologies. With the addition of 16 new wireless connectivity devices, we are empowering you to innovate, scale and accelerate the deployment of wireless connectivity – no matter what or how you are connecting.

Click to read more

featured chalk talk

Meet the Latest Wireless Member of the DARWIN Family

Sponsored by Mouser Electronics and Maxim Integrated (now part of Analog Devices)

May 21, 2021 -- Your next MCU needs to be more than just smart. It needs to be power-efficient, have ample memory, and industrial-grade security. In this episode of Chalk Talk, Amelia Dalton chats with Zach Metzinger of Maxim Integrated about the latest member of the DARWIN family with a new RISC-V co-processor.

Click here for more information about Maxim Integrated MAX32655 Low-Power Wireless Microcontroller