editor's blog
Subscribe Now

What Might Make an Accelerometer More Robust?

Last month STMicroelectronics announced a new accelerometer “engineered to withstand stresses of modern mobile life.” They see those stresses arising from increasingly thinner phones and the mechanical and thermal challenges they cause. They called out board bending as a particular challenge to the mechanical integrity of the works inside the accelerometer package.

So how do you improve the mechanical structure of the accelerometer to do this? First, it helps to realize that there are two structures in ST’s accelerometers. One operates in-plane and provides both x and y acceleration information. A separate structure is used for the out-of-plane z axis acceleration. On older models, these two structures were set side by side.

To illustrate how things might be improved, they made reference to stability in an airplane, even though the comparison can’t be taken too literally. If you want the smoothest ride in the plane, you sit in the middle, between the wings. Especially to the extent that the middle has the least stress and that stresses radiate out from that, there’s more disturbance (bumpiness) at the extremes – the wingtips and nose and tail – than in the middle.

It turns out that the z-axis accelerometer is the most sensitive, so improving it was a goal. So they moved it to the middle of the die layout rather than having it off on one side. And where would the x/y structure go if the z structure is hogging the middle? Symmetry is achieved by splitting the x/y structure and putting one half on either side of the center z structure. The two halves become the “wings.”

The other improvement was to double the number of anchoring points on the z structure from 2 to 4. This reduced the stresses on those points, making them less subject to failure.

You can find more details on the performance of this acceleromete

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Product Update: Family of DesignWare Ethernet IP for Time-Sensitive Networking

Sponsored by Synopsys

Hear John Swanson, our product expert, give an update on Synopsys’ DesignWare® Ethernet IP for Time-Sensitive Networking (TSN), which is compliant with IEEE standards and enables predictable guaranteed latency in automotive ADAS and industrial automation SoCs.

Click here for more information about DesignWare Ethernet Quality-of-Service Controller IP

Featured Paper

Helping physicians achieve faster, more accurate patient diagnoses with molecular test technology

Sponsored by Texas Instruments

Point-of-care molecular diagnostics (PoC) help physicians achieve faster, more accurate patient diagnoses and treatment decisions. This article breaks down how molecular test technology works and the building blocks for a PoC molecular diagnostics analyzer sensor front end system.

Read the Article

Featured Chalk Talk

USB Type C Wireless Power Charging

Sponsored by Mouser Electronics and Wurth

Today, there are fantastic new standard battery charging solutions that can help with your design. But, many designers don’t know where to begin with implementing these complex standards. In this episode of Chalk Talk, Amelia Dalton chats with Hebberly Ahatan of Wurth Electronik about the latest charging standards, and how new kits from Wurth make implementing them in your next design a snap.

Click here for more information about Wurth Design Kits