editor's blog
Subscribe Now

What Might Make an Accelerometer More Robust?

Last month STMicroelectronics announced a new accelerometer “engineered to withstand stresses of modern mobile life.” They see those stresses arising from increasingly thinner phones and the mechanical and thermal challenges they cause. They called out board bending as a particular challenge to the mechanical integrity of the works inside the accelerometer package.

So how do you improve the mechanical structure of the accelerometer to do this? First, it helps to realize that there are two structures in ST’s accelerometers. One operates in-plane and provides both x and y acceleration information. A separate structure is used for the out-of-plane z axis acceleration. On older models, these two structures were set side by side.

To illustrate how things might be improved, they made reference to stability in an airplane, even though the comparison can’t be taken too literally. If you want the smoothest ride in the plane, you sit in the middle, between the wings. Especially to the extent that the middle has the least stress and that stresses radiate out from that, there’s more disturbance (bumpiness) at the extremes – the wingtips and nose and tail – than in the middle.

It turns out that the z-axis accelerometer is the most sensitive, so improving it was a goal. So they moved it to the middle of the die layout rather than having it off on one side. And where would the x/y structure go if the z structure is hogging the middle? Symmetry is achieved by splitting the x/y structure and putting one half on either side of the center z structure. The two halves become the “wings.”

The other improvement was to double the number of anchoring points on the z structure from 2 to 4. This reduced the stresses on those points, making them less subject to failure.

You can find more details on the performance of this acceleromete

Leave a Reply

featured blogs
Jan 22, 2021
Amidst an ongoing worldwide pandemic, Samtec continues to connect with our communities. As a digital technology company, we understand the challenges and how uncertain times have been for everyone. In early 2020, Samtec Cares suspended its normal grant cycle and concentrated ...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 22, 2021
This is my second post about this year's CES. The first was Consumer Electronics Show 2021: GM, Intel . AMD The second day of CES opened with Lisa Su, AMD's CEO, presenting. AMD announced new... [[ Click on the title to access the full blog on the Cadence Community...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Common Design Pitfalls When Designing With Hall 2D Sensors And How To Avoid Them

Sponsored by Texas Instruments

This article discusses three widespread application issues in industrial and automotive end equipment – rotary encoding, in-plane magnetic sensing, and safety-critical – that can be solved more efficiently using devices with new features and higher performance. We will discuss in which end products these applications can be found and also provide a comparison with our traditional digital Hall-effect sensors showing how the new releases complement our existing portfolio.

Click here to download the whitepaper

featured chalk talk

Single Pair Ethernet

Sponsored by Mouser Electronics and Phoenix Contact

Single-pair Ethernet is revolutionizing industrial system design, with new levels of performance and simplicity. But, before you make the jump, you need to understand the options for cables, connectors, and other infrastructure. In this episode of Chalk Talk, Amelia Dalton chats with Lyndsey Walling of Phoenix Contact about the latest in single-pair Ethernet for industrial applications.

Click here for more information about Phoenix Contact Single Pair Ethernet (SPE) Connectors