editor's blog
Subscribe Now

Gesture Oops

Someone I know got a new phone recently. It had gesture recognition capabilities. (No, I’m not going to name names. Partly because I don’t know.)

Fortunately, he was able to turn that feature off. And you’re not going to believe why he decided to do that.

Apparently, a “wave” gesture was used to end a phone call. And I’m sure that gesture was tested over and over, but only in the obvious use case: when you’re done with a call, you wave and the call ends.

Only one problem, and apparently this must not have been tested, since it’s so egregious. When a call comes in and you try to answer the call? By bringing your hand up to the screen? Yup: it sees that as a wave and ends the call before you even answered it.

This happened enough times that he gave up and turned off the feature.

Years ago, I got a PC with fingerprint security. I tried over and over to get it to read my fingerprint consistently, and it couldn’t. So I disabled that feature, fearing that I might end up locked out of my own computer. More importantly, I mentally wrote that feature off, and I’ve never tried it since. Even though it probably works a lot better now.

Short-sighted? Maybe. But heck, I’m human. And lots of people do that with new features.

So we may now have a cluster of people that are deciding that gesture recognition doesn’t work based on this goofy oops. It boggles my mind that a phone could have made it out into the wild working like that; maybe it’s something else going wrong, but it doesn’t matter. The user’s experience was that attempting to answer a call would hang the call up. Shutting off gesture recognition solved the problem.

Time to go back and review the testing scenarios…

Leave a Reply

featured blogs
Nov 23, 2022
The current challenge in custom/mixed-signal design is to have a fast and silicon-accurate methodology. In this blog series, we are exploring the Custom IC Design Flow and Methodology stages. This methodology directly addresses the primary challenge of predictability in creat...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 21, 2022
By Hossam Sarhan With the growing complexity of system-on-chip designs and technology scaling, multiple power domains are needed to optimize… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Powering Servers and AI with Ultra-Efficient IPOL Voltage Regulators

Sponsored by Infineon

For today’s networking, telecom, server, and enterprise storage applications, power efficiency and power density are crucial components to the success of their power management. In this episode of Chalk Talk, Amelia Dalton and Dr. Davood Yazdani from Infineon chat about the details of Infineon’s ultra-efficient integrated point of load voltage regulators. Davood and Amelia take a closer look at the operation of these integrated point of load voltage regulators and why using the Infineon OptiMOS 5 FETs combined with the Infineon Fast Constant On Time controller engine make them a great solution for your next design.

Click here for more information about Integrated POL Voltage Regulators