editor's blog
Subscribe Now

Paper Harvester?

My skeptic senses are tingling a bit here… Perhaps unfairly; let’s see.

Energy harvesting is a big deal these days, with folks off trying to scavenge enough power to do useful things without the need for an external connection or a battery. Is it possible to take an old party trick and rebrand it as energy harvesting?

Disney has been getting a fair bit of attention over their “paper energy harvester.” Here’s the deal: paper and Teflon are rubbed together, creating a field via the triboelectric effect. The Teflon takes electrons from the paper, setting up an electret. It’s high voltage, low power: around 1000 V open circuit, 40-50 mW through 1 MΩ.

Let’s switch around the language and materials a bit and see if looks at all familiar. Tribozeau the Clown comes to a kids’ birthday party with balloons aplenty. He dazzles them by taking a balloon and rubbing it on his baggy pants. He holds it near a child’s hair; the hair sticks out, yearning for contact with the balloon. He then sticks the balloon to the wall, where it dutifully remains in defiance of gravity. He explains this (as if anyone is listening) as “static electricity.”

Once I watched the demos of the paper harvester, I couldn’t help feeling like all we’re seeing there is good old-fashioned static electricity (which is what the hoi polloi would call it; “triboelectricity” seems so much more elegant).

Depending on the mechanical configuration, you can tap, rotate, rub, or slide the surface with your fingers to generate the effect. The difference from the party trick appears to be that they’ve harnessed it to do something: activate e-paper, blink some lights, whatever might be possible with the given power budget.

It’s a real-time thing only; no energy is being stored. Use it or lose it. My sense is that it’s interesting for interactive displays; Discovery Museum kind of stuff. I can’t decide if it’s more than a gimmick. Granted, for an entertainment company like Disney, there could be something here. But beyond that?

Perhaps it could serve as an actuator – you know, for, say, a light switch. Just enough to kick on the mains juice. But does it have benefits over alternative approaches? Part of what’s touted is its simplicity – you could build it at home. But again, that’s Science Fair stuff – does it matter commercially?

What do you think? Am I missing something here? Is this more than I’m seeing? And are there significant use opportunities that are whooshing madly over my head?

Click here to see their original paper (as PDF).

Leave a Reply

featured blogs
Dec 4, 2023
The OrCAD X and Allegro X 23.1 release comes with a brand-new content delivery application called Cadence Doc Assistant, shortened to Doc Assistant, the next-gen app for content searching, navigation, and presentation. Doc Assistant, with its simplified content classification...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

VITA RF Product Portfolio: Enabling An OpenVPX World
Interoperability is a very valuable aspect of military and aerospace electronic designs and is a cornerstone to VITA, OpenVPX and SOSA. In this episode of Chalk Talk, Amelia Dalton and Eddie Alexander from Amphenol SV explore Amphenol SV’s portfolio of VITA RF solutions. They also examine the role that SOSA plays in the development of military and aerospace systems and how you can utilize Amphenol SV’s VITA RF solutions in your next design.
Oct 25, 2023
4,921 views