editor's blog
Subscribe Now

Paper Harvester?

My skeptic senses are tingling a bit here… Perhaps unfairly; let’s see.

Energy harvesting is a big deal these days, with folks off trying to scavenge enough power to do useful things without the need for an external connection or a battery. Is it possible to take an old party trick and rebrand it as energy harvesting?

Disney has been getting a fair bit of attention over their “paper energy harvester.” Here’s the deal: paper and Teflon are rubbed together, creating a field via the triboelectric effect. The Teflon takes electrons from the paper, setting up an electret. It’s high voltage, low power: around 1000 V open circuit, 40-50 mW through 1 MΩ.

Let’s switch around the language and materials a bit and see if looks at all familiar. Tribozeau the Clown comes to a kids’ birthday party with balloons aplenty. He dazzles them by taking a balloon and rubbing it on his baggy pants. He holds it near a child’s hair; the hair sticks out, yearning for contact with the balloon. He then sticks the balloon to the wall, where it dutifully remains in defiance of gravity. He explains this (as if anyone is listening) as “static electricity.”

Once I watched the demos of the paper harvester, I couldn’t help feeling like all we’re seeing there is good old-fashioned static electricity (which is what the hoi polloi would call it; “triboelectricity” seems so much more elegant).

Depending on the mechanical configuration, you can tap, rotate, rub, or slide the surface with your fingers to generate the effect. The difference from the party trick appears to be that they’ve harnessed it to do something: activate e-paper, blink some lights, whatever might be possible with the given power budget.

It’s a real-time thing only; no energy is being stored. Use it or lose it. My sense is that it’s interesting for interactive displays; Discovery Museum kind of stuff. I can’t decide if it’s more than a gimmick. Granted, for an entertainment company like Disney, there could be something here. But beyond that?

Perhaps it could serve as an actuator – you know, for, say, a light switch. Just enough to kick on the mains juice. But does it have benefits over alternative approaches? Part of what’s touted is its simplicity – you could build it at home. But again, that’s Science Fair stuff – does it matter commercially?

What do you think? Am I missing something here? Is this more than I’m seeing? And are there significant use opportunities that are whooshing madly over my head?

Click here to see their original paper (as PDF).

Leave a Reply

featured blogs
Apr 16, 2024
In today's semiconductor era, every minute, you always look for the opportunity to enhance your skills and learning growth and want to keep up to date with the technology. This could mean you would also like to get hold of the small concepts behind the complex chip desig...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
9,922 views