editor's blog
Subscribe Now

A New Piezoelectric Oscillator

A few months ago, we looked at Sand 9’s initial announcement. They had laid out 3 families at that point: a basic resonator (TM061), a temperature-sensing resonator (TM361), and a “roadmap” family for temperature-sensing oscillators. Well, they recently announced a new device that goes in yet a new family: temperature-compensated oscillators – the TM651. When chip-scale packaged, they claim it’s the smallest oscillator in the world (although an LGA is also available).

They’ve come out swinging at their performance versus quartz, in particular the latter’s susceptibility to so-called “activity dips,” which we covered in the prior piece. But they’re also comparing themselves to other MEMS – and, in particular, electrostatic – oscillators. They say:

  • The filter and noise are better than any MEMS oscillator and competitive with quartz;
  • They have 250-ps edge rates as compared to about 1 ns for quartz;
  • Their vibration immunity is an order of magnitude better than quartz;
  • They have 1/15th the drift of other silicon MEMS due to their analog compensation, which is smoother than digital;
  • They can achieve higher frequencies without a DLL, which quartz needs for frequencies above 50 MHz;
  • They don’t have quartz’s finicky start-up time (and, apparently, start-up can occasionally fail outright with quartz);
  • They have better electromechanical coupling than electrostatic MEMS devices because they’re piezoelectric (with the presumed effect that the coupling happens intrinsically within the material as opposed to being between two distinct mechanical members);
  • They have larger transduction area, which, counter-intuitively, reduces die area (presumably because of better intrinsic sensitivity);
  • They have no air gaps, vs. those used with electrostatic devices (which goes to coupling efficiency);
  • They operate off of a lower voltage;
  • They have linear power vs. non-linear for electrostatic, giving them better noise performance;
  • They can work with a customer to have the customer’s electronics co-packaged with their resonator for better integration, which isn’t possible with quartz.

That’s a lot of claims.

Their electronics are in the cap wafer. The bonding is done wafer-to-wafer; both the MEMS and ASIC see very high yields (in fact, wafer probing on the MEMS die is done only on a wafer sample basis to see if it looks like there’s a problem with the lot). GlobalFoundries does this for them.

You can read more in their announcement.

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

Minitek Microspace

Sponsored by Mouser Electronics and Amphenol ICC

With the incredible pace of automotive innovation these days, it’s important to choose the right connectors for the job. With everything from high-speed data to lighting, connectors have a huge impact on reliability, cost, and design. In this episode of Chalk Talk, Amelia Dalton chats with Glenn Heath from Amphenol ICC about the Minitek MicroSpace line of automotive- and industrial-grade connectors.

Click here for more information about Amphenol FCI Minitek MicroSpace™ Connector System