editor's blog
Subscribe Now

A New Piezoelectric Oscillator

A few months ago, we looked at Sand 9’s initial announcement. They had laid out 3 families at that point: a basic resonator (TM061), a temperature-sensing resonator (TM361), and a “roadmap” family for temperature-sensing oscillators. Well, they recently announced a new device that goes in yet a new family: temperature-compensated oscillators – the TM651. When chip-scale packaged, they claim it’s the smallest oscillator in the world (although an LGA is also available).

They’ve come out swinging at their performance versus quartz, in particular the latter’s susceptibility to so-called “activity dips,” which we covered in the prior piece. But they’re also comparing themselves to other MEMS – and, in particular, electrostatic – oscillators. They say:

  • The filter and noise are better than any MEMS oscillator and competitive with quartz;
  • They have 250-ps edge rates as compared to about 1 ns for quartz;
  • Their vibration immunity is an order of magnitude better than quartz;
  • They have 1/15th the drift of other silicon MEMS due to their analog compensation, which is smoother than digital;
  • They can achieve higher frequencies without a DLL, which quartz needs for frequencies above 50 MHz;
  • They don’t have quartz’s finicky start-up time (and, apparently, start-up can occasionally fail outright with quartz);
  • They have better electromechanical coupling than electrostatic MEMS devices because they’re piezoelectric (with the presumed effect that the coupling happens intrinsically within the material as opposed to being between two distinct mechanical members);
  • They have larger transduction area, which, counter-intuitively, reduces die area (presumably because of better intrinsic sensitivity);
  • They have no air gaps, vs. those used with electrostatic devices (which goes to coupling efficiency);
  • They operate off of a lower voltage;
  • They have linear power vs. non-linear for electrostatic, giving them better noise performance;
  • They can work with a customer to have the customer’s electronics co-packaged with their resonator for better integration, which isn’t possible with quartz.

That’s a lot of claims.

Their electronics are in the cap wafer. The bonding is done wafer-to-wafer; both the MEMS and ASIC see very high yields (in fact, wafer probing on the MEMS die is done only on a wafer sample basis to see if it looks like there’s a problem with the lot). GlobalFoundries does this for them.

You can read more in their announcement.

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general, and employing them to perform masking operations in particular, can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: Fundamentals on the Modern Approach

Sponsored by Maxim Integrated

Learn about the fundamental concepts behind modern cryptography, including how symmetric and asymmetric keys work to achieve confidentiality, identification and authentication, integrity, and non-repudiation.

Click here to download the whitepaper

Featured Chalk Talk

Electrification of the Vehicle

Sponsored by Mouser Electronics and KEMET

The automotive technology revolution has arrived, and with it - new demands on components for automotive applications. Electric vehicles, ADAS, connected cars, and autonomous driving put fresh demands on our electrical and electronic parts. In this episode of Chalk Talk, Amelia Dalton chats with Nick Stephen of KEMET about components for the next generation of automobiles.

More information about KEMET Electronics ALA7D & ALA8D Snap-In Capacitors