editor's blog
Subscribe Now

Sorting Cells

Lens-free technology has poked its head up in a few places, but one of the more frequent views you may have of it is an application that Imec appears particularly fond of: a cell sorter.

The whole idea behind the contraption is to isolate abnormal blood cells from a sample. So they built a microfluidic device that delivers a flow of blood cells. Each cell passes over a lens-free aperture where a lens-free camera analyzes the interference patterns that the cell creates. That creates a differentiating signal between normal and abnormal cells.

The processing of that signature happens quickly enough that, at the point where the cell has traveled further to a microfluidic crossroads, normal cells can be steered down one channel; abnormal cells down another.

How do you “steer” a cell? Well, the default flow goes one way, and when a faulty cell is detected, at the time it hits the junction, a small heater creates an instantaneous bubble that pushes the cell into the other channel. (You could also actively steer the normal cells with a counter-bubble as well.)

In case that seems like a lot of work, well, it is. They say that they process 20 million images a second.

As I mentioned, they appear particularly proud of this, because it’s presented at numerous different venues, and they’ve invested in marvelous animation to illustrate what’s going on. So if you find yourself at an Imec function, you may also get to see the images. But, to be sure, it’s more than animation. When visiting their facility, this was one of the places they took us where they stood by like proud papas as we took a look at the real deals.

One of the challenges with building something like this is finding an adhesive that is compatible with being a microfluid channel, especially when there may be heaters and such in the device. Such an adhesive would be used to secure a glass cap.

Imec and JSR announced such a material last month. The adhesive can be patterned using normal photolithography, allowing this step to be performed on entire wafers. The picture below shows a cell sorter wafer with glass covers glued to the intact microfluidic dice, which contain those micro-heaters for steering the cells. With glass covers in place, the wafer can be diced up into individual cell sorters.

You can read more about this material in their announcement.JSR_wafer_red.png

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured paper

An Automated Method for Adding Resiliency to Mission-Critical SoC Designs

Sponsored by Synopsys

Adding safety measures to SoC designs in the form of radiation-hardened elements or redundancy is essential in making mission-critical applications in the A&D, cloud, automotive, robotics, medical, and IoT industries more resilient against random hardware failures that occur. This paper discusses the automated process of implementing the safety mechanisms/measures (SM) in the design to make them more resilient and analyze their effectiveness from design inception to the final product.

Click here to read more

featured chalk talk

E-Mobility - Charging Stations & Wallboxes AC or DC Charging?
In this episode of Chalk Talk, Amelia Dalton and Andreas Nadler from Würth Elektronik investigate e-mobility charging stations and wallboxes. We take a closer look at the benefits, components, and functions of AC and DC wallboxes and charging stations. They also examine the role that DC link capacitors play in power conversion and how Würth Elektronik can help you create your next AC and DC wallbox or charging station design.
Jul 12, 2023
9,075 views