editor's blog
Subscribe Now

Sorting Cells

Lens-free technology has poked its head up in a few places, but one of the more frequent views you may have of it is an application that Imec appears particularly fond of: a cell sorter.

The whole idea behind the contraption is to isolate abnormal blood cells from a sample. So they built a microfluidic device that delivers a flow of blood cells. Each cell passes over a lens-free aperture where a lens-free camera analyzes the interference patterns that the cell creates. That creates a differentiating signal between normal and abnormal cells.

The processing of that signature happens quickly enough that, at the point where the cell has traveled further to a microfluidic crossroads, normal cells can be steered down one channel; abnormal cells down another.

How do you “steer” a cell? Well, the default flow goes one way, and when a faulty cell is detected, at the time it hits the junction, a small heater creates an instantaneous bubble that pushes the cell into the other channel. (You could also actively steer the normal cells with a counter-bubble as well.)

In case that seems like a lot of work, well, it is. They say that they process 20 million images a second.

As I mentioned, they appear particularly proud of this, because it’s presented at numerous different venues, and they’ve invested in marvelous animation to illustrate what’s going on. So if you find yourself at an Imec function, you may also get to see the images. But, to be sure, it’s more than animation. When visiting their facility, this was one of the places they took us where they stood by like proud papas as we took a look at the real deals.

One of the challenges with building something like this is finding an adhesive that is compatible with being a microfluid channel, especially when there may be heaters and such in the device. Such an adhesive would be used to secure a glass cap.

Imec and JSR announced such a material last month. The adhesive can be patterned using normal photolithography, allowing this step to be performed on entire wafers. The picture below shows a cell sorter wafer with glass covers glued to the intact microfluidic dice, which contain those micro-heaters for steering the cells. With glass covers in place, the wafer can be diced up into individual cell sorters.

You can read more about this material in their announcement.JSR_wafer_red.png

Leave a Reply

featured blogs
Jan 15, 2021
I recently saw (what appears at first glance to be) a simple puzzle involving triangles. But is finding the solution going to be trickier than I think?...
Jan 15, 2021
It's Martin Luther King Day on Monday. Cadence is off. Breakfast Bytes will not appear. And, as is traditional, I go completely off-topic the day before a break. In the past, a lot of novelty in... [[ Click on the title to access the full blog on the Cadence Community s...
Jan 14, 2021
Learn how electronic design automation (EDA) tools & silicon-proven IP enable today's most influential smart tech, including ADAS, 5G, IoT, and Cloud services. The post 5 Key Innovations that Are Making Everything Smarter appeared first on From Silicon To Software....
Jan 13, 2021
Testing is the final step of any manufacturing process, and arguably the most important, and yet it can often be overlooked.  Releasing a poorly tested product onto the market has destroyed more than one reputation for quality, and this is even more important in an age when ...

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

Featured Chalk Talk

RX23W Bluetooth

Sponsored by Mouser Electronics and Renesas

Adding Bluetooth to your embedded design can be tricky for IoT developers. Bluetooth 5 brings a host of new capabilities that make Bluetooth integration more compelling than ever. In this episode of Chalk Talk, Amelia Dalton chats with Michael Sarpa from Renesas about the cool capabilities of Bluetooth 5, and how you can easily integrate them into your next project.

More information about Renesas Electronics RX23W 32-bit Microcontrollers