editor's blog
Subscribe Now

Next-Generation Image Signal Processor

Imagination Technologies has announced a new image signal processing architecture that they’re calling “Raptor.” The overarching concept is that the image signal processor (ISP) should no longer be a separate chip: it should be integrated into the main system SoC, along with the other related accelerators, CPU, and GPU. Raptor is IP that allows such integration. It’s targeted at next-generation image processing applications like feature identification, scalable for both low- and high-end applications.

The benefits they tout come both from this integration and the fact that they provide all of the pieces required between the raw camera sensor(s) and final RGB or YUV output or an encoded image or stream. Within the ISP itself, they are able to leverage the fact that all of the technology comes from the same place – with similar compression and a unified architecture. They say that this keeps latency low and supports their “Zero-memory” approach to delivering the image to encoders and various effects accelerators.

Of course, having all of this on the SoC reduces the chip-to-chip overhead of an external ISP. The ISP also gets the process advantages of the advanced nodes typically used for an SoC.

The architecture is intended to support multiple sensors, maintaining up to four concurrent contexts. These could be front- and back-side cameras on a phone, for example, or they could be multiple cameras for multi-camera arrays, stereoscopic imaging, or “integral photography,” where multiple images are stitched together to form what can be an almost 3D image with holographic tendencies. They support up to 16-bit pixel depth, scalable to the needs of the application.

Raptor_block-diagram_red.jpg

Custom processing can also be implemented by tagging the image data at various points in the pipeline and then running that data back into the pipeline. The image statistics are gathered as the image is processed; those statistics are available to the encoders, eliminating one encoding pass.

Availability is targeted for the first quarter of 2014. You can find more information in their announcement.

9 thoughts on “Next-Generation Image Signal Processor”

  1. Pingback: puffco plus or
  2. Pingback: binaural
  3. Pingback: DMPK
  4. Pingback: juegos friv
  5. Pingback: jeux de friv
  6. Pingback: bandar bola
  7. Pingback: Aws Alkhazraji

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general, and employing them to perform masking operations in particular, can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: DesignWare® TCAM IP -- Synopsys

Sponsored by Synopsys

Join Rahul Thukral in this discussion on TCAMs, including performance and power considerations. Synopsys TCAMs are used in networking and automotive applications as they are low-risk, production-proven, and meet automotive requirements.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries & GPIO

Featured Paper

Cryptography: A Closer Look at the Algorithms

Sponsored by Maxim Integrated

Get more details about how cryptographic algorithms are implemented and how an asymmetric key algorithm can be used to exchange a shared private key.

Click here to download the whitepaper

Featured Chalk Talk

Use of Advanced Sensors in Smart Industry Applications

Sponsored by Mouser Electronics and ST Microelectronics

In industrial systems, sensors can give us real-time information about the condition and operation critical machinery. By monitoring vibration, temperature, and other factors, we can get early warning of failures and do predictive maintenance - avoiding costly downtime. In this episode of Chalk Talk, Amelia Dalton chats with Manuel Cantone of ST Microelectronics about the SensorTile Wireless Industrial Node - an integrated solution that makes industrial monitoring a snap.

More information about STMicroelectronics STWIN SensorTile Wireless Industrial Node