editor's blog
Subscribe Now

Next-Generation Image Signal Processor

Imagination Technologies has announced a new image signal processing architecture that they’re calling “Raptor.” The overarching concept is that the image signal processor (ISP) should no longer be a separate chip: it should be integrated into the main system SoC, along with the other related accelerators, CPU, and GPU. Raptor is IP that allows such integration. It’s targeted at next-generation image processing applications like feature identification, scalable for both low- and high-end applications.

The benefits they tout come both from this integration and the fact that they provide all of the pieces required between the raw camera sensor(s) and final RGB or YUV output or an encoded image or stream. Within the ISP itself, they are able to leverage the fact that all of the technology comes from the same place – with similar compression and a unified architecture. They say that this keeps latency low and supports their “Zero-memory” approach to delivering the image to encoders and various effects accelerators.

Of course, having all of this on the SoC reduces the chip-to-chip overhead of an external ISP. The ISP also gets the process advantages of the advanced nodes typically used for an SoC.

The architecture is intended to support multiple sensors, maintaining up to four concurrent contexts. These could be front- and back-side cameras on a phone, for example, or they could be multiple cameras for multi-camera arrays, stereoscopic imaging, or “integral photography,” where multiple images are stitched together to form what can be an almost 3D image with holographic tendencies. They support up to 16-bit pixel depth, scalable to the needs of the application.

Raptor_block-diagram_red.jpg

Custom processing can also be implemented by tagging the image data at various points in the pipeline and then running that data back into the pipeline. The image statistics are gathered as the image is processed; those statistics are available to the encoders, eliminating one encoding pass.

Availability is targeted for the first quarter of 2014. You can find more information in their announcement.

9 thoughts on “Next-Generation Image Signal Processor”

  1. Pingback: puffco plus or
  2. Pingback: binaural
  3. Pingback: DMPK
  4. Pingback: juegos friv
  5. Pingback: jeux de friv
  6. Pingback: bandar bola
  7. Pingback: Aws Alkhazraji

Leave a Reply

featured blogs
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...
Sep 24, 2020
I just saw a video from 2012 in which Jeri Ellsworth is strolling around a Makerfaire flaunting her Commodore 64-based bass guitar....
Sep 24, 2020
Samtec works with system architects in the early stages of their design to create solutions for cable management which provide even distribution of thermal load. Using ultra-low skew twinax cable to route signals over the board is a key performance enabler as signal integrity...

Featured Video

AI SoC Chats: Memory Interface IP - DDR, LPDDR, HBM, GDDR

Sponsored by Synopsys

When building AI SoCs, how do you choose the optimal memory interface? Learn about the market trends and challenges for DDR, LPDDR, HBM, and GDDR, and how Synopsys DesignWare IP can help.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

AVX Supercapacitors: PrizmaCap

Sponsored by Mouser Electronics and AVX

If your application requires a supercapacitor, there are a lot of options. You need the right form factor, temperature range, weight, and capacitance, of course. In this episode of Chalk Talk, Amelia Dalton chats with Eric DeRose of AVX about choosing the right supercapacitor and about PrizmaCap - a new supercapacitor with low height, high temperature, and lightweight.

Click here for more information AVX PrizmaCap™