editor's blog
Subscribe Now

An Accelerometer GUI

Including an accelerometer in your system is easy these days, right? Heck, they can trigger interrupts in your processor, so just toss it in, wait for the fateful interrupt, and let your handler do the rest. Right?

Actually… no. There are numerous controls that you have – and will likely want to take advantage of – to optimize how your accelerometer works. Those settings have a significant impact on noise and power. Sampling rate is a good example: the faster you sample, the more accurate your reading will be (i.e., lower noise). But that also increases power consumption. There are a whole slew of registers in the accelerometer that contain all of the settings, and the datasheets tell you how to get to each one.

Problem is, you mostly need to do that through code, typically. That can mean iterating through your start-up code, for example, to load different values and see what happens. And that last bit is important: you might actually have to exercise the thing to figure out where the best balance is. Lots of back-and-forth changing settings, measuring, rinsing, and repeating.

The other alternative has been to use an accelerometer that has been simplified, with a few crude settings that may or may not represent the best mix for your system.

Kionix recently announced a tool to provide easier access to the fine-grained detail in their accelerometers. The idea behind this FlexSet Performance Optimizer is to make detailed adjustments almost as easy as the crude ones on simplified accelerometers.

At the first level, this is a GUI into the register set. So at the very least, it’s easy to see and change register values. At the next level, the tool will provide information on the power and noise implications of your settings – meaning you don’t need to exercise the thing to figure out the impact of your selected settings. And at yet a higher level, you can do side-by-side comparisons of different cases.

The hooks for this are built into their latest accelerometers and will support new ones going forward. The GUI itself can be downloaded or run on the internet. (Presumably the one on the internet won’t actually set the settings in your accelerometer, just figure out what those settings should be. Unless, I suppose, you’ve connected your accelerometer to the internet…)

You can find more in their release.

Leave a Reply

featured blogs
Mar 21, 2023
Let's catch you up on what's been going on here at Cadence Fidelity CFD. Events You can find these at any time by going to the Events page on cadence.com and selecting CFD from the Technology menu. NVIDIA GTC, 20-23 Mar Join us virtually at the NVIDIA GTC Developers...
Mar 21, 2023
We explain computational lithography and explore how our partnership with NVIDIA accelerates semiconductor scaling and the chip design flow in the AI age. The post How Synopsys and NVIDIA Are Accelerating Semiconductor Scaling in the AI Age appeared first on New Horizons for...
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

TE APL: Flexibility for Any Use
Connectors can make a big difference when it comes to reducing system complexity and ease of use but did you know they can also help with automation and sustainability as well? In this episode of Chalk Talk, Amelia Dalton and Anita Costamagna from TE discuss TE’s APL Connectivity solutions. They dig into the details of these connector solutions and how you can get started using these connector solutions in your next design.
Sep 22, 2022
22,883 views