editor's blog
Subscribe Now

An Accelerometer GUI

Including an accelerometer in your system is easy these days, right? Heck, they can trigger interrupts in your processor, so just toss it in, wait for the fateful interrupt, and let your handler do the rest. Right?

Actually… no. There are numerous controls that you have – and will likely want to take advantage of – to optimize how your accelerometer works. Those settings have a significant impact on noise and power. Sampling rate is a good example: the faster you sample, the more accurate your reading will be (i.e., lower noise). But that also increases power consumption. There are a whole slew of registers in the accelerometer that contain all of the settings, and the datasheets tell you how to get to each one.

Problem is, you mostly need to do that through code, typically. That can mean iterating through your start-up code, for example, to load different values and see what happens. And that last bit is important: you might actually have to exercise the thing to figure out where the best balance is. Lots of back-and-forth changing settings, measuring, rinsing, and repeating.

The other alternative has been to use an accelerometer that has been simplified, with a few crude settings that may or may not represent the best mix for your system.

Kionix recently announced a tool to provide easier access to the fine-grained detail in their accelerometers. The idea behind this FlexSet Performance Optimizer is to make detailed adjustments almost as easy as the crude ones on simplified accelerometers.

At the first level, this is a GUI into the register set. So at the very least, it’s easy to see and change register values. At the next level, the tool will provide information on the power and noise implications of your settings – meaning you don’t need to exercise the thing to figure out the impact of your selected settings. And at yet a higher level, you can do side-by-side comparisons of different cases.

The hooks for this are built into their latest accelerometers and will support new ones going forward. The GUI itself can be downloaded or run on the internet. (Presumably the one on the internet won’t actually set the settings in your accelerometer, just figure out what those settings should be. Unless, I suppose, you’ve connected your accelerometer to the internet…)

You can find more in their release.

Leave a Reply

featured blogs
Sep 22, 2021
'μWaveRiders' 是ä¸ç³»åˆ—æ—¨å¨æŽ¢è®¨ Cadence AWR RF 产品的博客,按æˆæ›´æ–°ï¼Œå…¶å†…容涵盖 Cadence AWR Design Environment æ新的核心功能,专题视频ï¼...
Sep 22, 2021
3753 Cruithne is a Q-type, Aten asteroid in orbit around the Sun in 1:1 orbital resonance with the Earth, thereby making it a co-orbital object....
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Enter the InnovateFPGA Design Contest to Solve Real-World Sustainability Problems

Sponsored by Intel

The Global Environment Facility (GEF) Small Grants Programme, implemented by the U.N. Development Program, is collaborating with the #InnovateFPGA contest to support 7 funded projects that are looking for technical solutions in biodiversity, sustainable agriculture, and marine conservation. Contestants have access to the Intel® Cyclone® V SoC FPGA in the Cloud Connectivity Kit, Analog Devices plug-in boards, and Microsoft Azure IoT.

Learn more about the contest and enter here by September 30, 2021

featured paper

Keep Your System Up and Running With a Single Supercapacitor

Sponsored by Maxim Integrated (now part of Analog Devices)

This design solution presents a novel solution for backing up system power in both battery and line-powered systems. The elegant architecture runs from a single supercapacitor, provides a tightly regulated 5V output at up to 3A, and features 94% efficiency.

Click to read more

featured chalk talk

High-Performance Test to 70 GHz

Sponsored by Samtec

Today’s high-speed serial interfaces with PAM4 present serious challenges when it comes to test. Eval boards can end up huge, and signal integrity of the test point system is always a concern. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about the Bullseye test point system, which can maintain signal integrity up to 70 GHz with a compact test point footprint.

Click here for more information about Samtec’s Bulls Eye® Test System