editor's blog
Subscribe Now

MEMS First Silicon Success

Some time back, AMFitzgerald and Silex, a MEMS consultancy and foundry, respectively, announced their “RocketMEMS” program in order to take steps to accelerate the notoriously slow MEMS design cycle. At the recent MEMS Executive Congress, they announced the first fruits of this labor.

They had designed three pressure sensors: one for blood pressure/medical, an altimeter, and one for industrial use. Critically, Silex provided design guidance to drive the design. While that might seem obvious, it’s the reverse of what usually happens, where the designers tell the foundry how they want the process details to look. As a result, the design had a better chance of working, given that the process had been characterized already.

The designers used Ansys, SoftMems, and Tanner tools. DRC was manual (since there is no automated MEMS DRC tool, although apparently the hooks are available if anyone wants to step up…).

Results? First silicon worked. And it took only 7 months for design and fab; wafer and package-level test took an additional month.

In this model, their customers handle the packaging (design and assembly) and the sensor algorithms, so that wasn’t part of the project.

This would appear to validate the concept that MEMS design can happen in less than five years.

You can read more in their announcement.

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys USB4 PHY Silicon Correlation with Keysight ADS Simulation

Sponsored by Synopsys

This video features Synopsys USB4 PHY IP showing silicon correlation with IBIS-AMI simulation using Keysight PathWave ADS.

Learn More

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Clamping Down on Failure: Protecting 24 V Digital Outputs

Sponsored by Mouser Electronics and Skyworks

If you're designing IEC61131 compliant digital outputs for these PLCs or industrial controllers, you need to have a plan to protect these outputs from a variety of unknowns. In this episode of Chalk Talk, Amelia Dalton chats with Asa Kirby from Skyworks about an innovative new isolated smart switch device from Skyworks that gives you an unprecedented level of channel flexibility and protection, letting you offer customers a truly “set it and forget it” solution when it comes to your next PLC design.

Click here for more information about Skyworks Solutions Inc. Si834x Isolated Smart Switches