editor's blog
Subscribe Now

MEMS First Silicon Success

Some time back, AMFitzgerald and Silex, a MEMS consultancy and foundry, respectively, announced their “RocketMEMS” program in order to take steps to accelerate the notoriously slow MEMS design cycle. At the recent MEMS Executive Congress, they announced the first fruits of this labor.

They had designed three pressure sensors: one for blood pressure/medical, an altimeter, and one for industrial use. Critically, Silex provided design guidance to drive the design. While that might seem obvious, it’s the reverse of what usually happens, where the designers tell the foundry how they want the process details to look. As a result, the design had a better chance of working, given that the process had been characterized already.

The designers used Ansys, SoftMems, and Tanner tools. DRC was manual (since there is no automated MEMS DRC tool, although apparently the hooks are available if anyone wants to step up…).

Results? First silicon worked. And it took only 7 months for design and fab; wafer and package-level test took an additional month.

In this model, their customers handle the packaging (design and assembly) and the sensor algorithms, so that wasn’t part of the project.

This would appear to validate the concept that MEMS design can happen in less than five years.

You can read more in their announcement.

Leave a Reply

featured blogs
Dec 1, 2023
Why is Design for Testability (DFT) crucial for VLSI (Very Large Scale Integration) design? Keeping testability in mind when developing a chip makes it simpler to find structural flaws in the chip and make necessary design corrections before the product is shipped to users. T...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

OPTIGA™ TPM SLB 9672 and SLB 9673 RPI Evaluation Boards
Sponsored by Mouser Electronics and Infineon
Security is a critical design concern for most electronic designs today, but finding the right security solution for your next design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Andreas Fuchs from Infineon investigate how Infineon’s OPTIGA trusted platform module can not only help solve your security design concerns but also speed up your design process as well.
Jun 26, 2023
19,375 views