editor's blog
Subscribe Now

MEMS First Silicon Success

Some time back, AMFitzgerald and Silex, a MEMS consultancy and foundry, respectively, announced their “RocketMEMS” program in order to take steps to accelerate the notoriously slow MEMS design cycle. At the recent MEMS Executive Congress, they announced the first fruits of this labor.

They had designed three pressure sensors: one for blood pressure/medical, an altimeter, and one for industrial use. Critically, Silex provided design guidance to drive the design. While that might seem obvious, it’s the reverse of what usually happens, where the designers tell the foundry how they want the process details to look. As a result, the design had a better chance of working, given that the process had been characterized already.

The designers used Ansys, SoftMems, and Tanner tools. DRC was manual (since there is no automated MEMS DRC tool, although apparently the hooks are available if anyone wants to step up…).

Results? First silicon worked. And it took only 7 months for design and fab; wafer and package-level test took an additional month.

In this model, their customers handle the packaging (design and assembly) and the sensor algorithms, so that wasn’t part of the project.

This would appear to validate the concept that MEMS design can happen in less than five years.

You can read more in their announcement.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

Introduction to the i.MX 93 Applications Processor Family
Robust security, insured product longevity, and low power consumption are critical design considerations of edge computing applications. In this episode of Chalk Talk, Amelia Dalton chats with Srikanth Jagannathan from NXP about the benefits of the i.MX 93 application processor family from NXP can bring to your next edge computing application. They investigate the details of the edgelock secure enclave, the energy flex architecture and arm Cortex-A55 core of this solution, and how they can help you launch your next edge computing design.
Oct 23, 2023
26,434 views