editor's blog
Subscribe Now

MEMS First Silicon Success

Some time back, AMFitzgerald and Silex, a MEMS consultancy and foundry, respectively, announced their “RocketMEMS” program in order to take steps to accelerate the notoriously slow MEMS design cycle. At the recent MEMS Executive Congress, they announced the first fruits of this labor.

They had designed three pressure sensors: one for blood pressure/medical, an altimeter, and one for industrial use. Critically, Silex provided design guidance to drive the design. While that might seem obvious, it’s the reverse of what usually happens, where the designers tell the foundry how they want the process details to look. As a result, the design had a better chance of working, given that the process had been characterized already.

The designers used Ansys, SoftMems, and Tanner tools. DRC was manual (since there is no automated MEMS DRC tool, although apparently the hooks are available if anyone wants to step up…).

Results? First silicon worked. And it took only 7 months for design and fab; wafer and package-level test took an additional month.

In this model, their customers handle the packaging (design and assembly) and the sensor algorithms, so that wasn’t part of the project.

This would appear to validate the concept that MEMS design can happen in less than five years.

You can read more in their announcement.

Leave a Reply

featured blogs
Jan 17, 2022
Today's interview features Dajana Danilovic, an application engineer based near Munich, Germany. In this video, Dajana shares about her pathway to becoming an engineer, as well as the importance of... [[ Click on the title to access the full blog on the Cadence Community sit...
Jan 13, 2022
See what's behind the boom in AI applications and explore the advanced AI chip design tools and strategies enabling AI SoCs for HPC, healthcare, and more. The post The Ins and Outs of AI Chip Design appeared first on From Silicon To Software....
Jan 12, 2022
In addition to sporting a powerful processor and supporting Bluetooth wireless communications, Seeed's XIAO BLE Sense also boasts a microphone and a 6DOF IMU....

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

Add Authentication Security to Automotive Endpoints Using the 1-Wire Interface

Sponsored by Analog Devices

By adding a single authentication IC, automotive designers can authenticate a component with only one signal between an ECU and endpoint component. This is particularly important as counterfeit and theft are increasingly problems in automotive applications. This application note describes how to implement the DS28E40 Deep Cover 1-Wire Authenticator in a system to provide authentication for optical cameras, headlamps, EV Batteries, occupancy sensors, and even steering wheels, and more.

Click here to read more

featured chalk talk

Just 1-Wire to Power and Operate I2C or SPI Endpoints

Sponsored by Mouser Electronics and Analog Devices

If you are working on a connection or IO constrained design, a one wire solution could be a great way for you to power and operate your I2C or SPI endpoints. In this episode of Chalk Talk, Amelia Dalton chats with Scott Jones from Maxim Integrated about the DS28E18 communications bridge: a one wire solution that can help you address a variety of system level challenges including protocol conversion, wiring limitations, and communication distance concerns.

Click here for more information about the Maxim Integrated DS28E18EVKIT Evaluation System