editor's blog
Subscribe Now

Touchscreen Response

My whimsical piece regarding an airplane touchscreen caught the eye of Touch International. They make touchscreens for airplanes and cars and other high-rel applications; they’ve been doing this for a long time. (I honestly don’t know if they made the screen I was whacking on.)

We met at the Interactive Technology Summit (erstwhile Touch Gesture Motion). It was interesting to contrast our discussion with some of the other things that I was hearing at the show. Touch Int’l makes all their own touchscreens, but they don’t lead the industry in R&D; to use CEO Michael Woolstrum’s phrase, they’re more about “applied science,” using established technologies in custom applications at moderate volumes.

And yet, while folks in the conference presentations talk about someday being able to do curved touchscreens, apparently Touch Int’l has been doing them since the 80s. To be clear, that’s “1D” curved, such as might come off of a roll. 2D curved, which you could fit over a spheroidal sort of shape, is coming, but isn’t here yet. For Touch Int’l or anyone else.

We also discussed the implications of touchscreens in some of the applications they address. Cars, for instance, presumably in an attempt to attract people with pseudo-whiz-bang cool-looking technology, have dropped all the easy-to-use knobs we (or our forebears) used to use intuitively. Instead, we’re faced with impenetrable GUIs that we must learn anew for each car, taking valuable time away from minor things like looking at the road.

I asked what the benefit of that really was (and, to be clear, this is pre-office-and-hometheater-in-the-car center stack), and apparently electronics are more reliable. I cocked my head a bit at that: phones used to be robust (you know, the old black Ma Bell ones that you could drop with impunity?) and they advertised that fact. Until they went more electronic. (I actually had a phone store salesman specifically say that the vaunted reliability no longer applied to new phones… this in the 80s.) And I owned a Mercedes at one point that seemed to need a lot of work. I talked to another Mercedes owner who crowed about the reliability. When I asked further, he clarified: the old ones were reliable; the newer ones with electronics were not. And I’ve never owned a car where the (now electronic) radio wasn’t the first thing to fail.

So hearing that electronic versions are more robust than the mechanical ones surprised me. I just assumed they were cheaper or looked cool or something… Mr. Woolstrum did agree that they can be confusing to use. In fact, he proposed a compromise that he thought optimal: putting mechanical controls over a touchscreen. That combines the ease-of-use and familiarity of knobs and such over a touchscreen that actually does the work. Interesting idea.

So next time I’m banging away at a touchscreen in a car or in a plane, I’ll have a name and a face to associate with it. And they’ll probably wonder whether that’s a good thing…

Leave a Reply

featured blogs
Oct 20, 2020
Voltus TM IC Power Integrity Solution is a power integrity and analysis signoff solution that is integrated with the full suite of design implementation and signoff tools of Cadence to deliver the... [[ Click on the title to access the full blog on the Cadence Community site...
Oct 19, 2020
Have you ever wondered if there may another world hidden behind the facade of the one we know and love? If so, would you like to go there for a visit?...
Oct 16, 2020
Another event popular in the tech event circuit is PCI-SIG® DevCon. While DevCon events are usually in-person around the globe, this year, like so many others events, PCI-SIG DevCon is going virtual. PCI-SIG DevCons are members-driven events that provide an opportunity to le...
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

Autonomous vehicles, robotics, augmented and virtual reality all require simultaneous localization and mapping (SLAM) to build a map of the surroundings. Combining SLAM with a neural network engine adds intelligence, allowing the system to identify objects and make decisions. In this demo, Synopsys ARC EV processor’s vision engine (VPU) accelerates KudanSLAM algorithms by up to 40% while running object detection on its CNN engine.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured Paper

New package technology improves EMI and thermal performance with smaller solution size

Sponsored by Texas Instruments

Power supply designers have a new tool in their effort to achieve balance between efficiency, size, and thermal performance with DC/DC power modules. The Enhanced HotRod™ QFN package technology from Texas Instruments enables engineers to address design challenges with an easy-to-use footprint that resembles a standard QFN. This new package type combines the advantages of flip-chip-on-lead with the improved thermal performance presented by a large thermal die attach pad (DAP).

Click here to download the whitepaper

Featured Chalk Talk

Create Multi-Band Sensor Networks with the LaunchPad SensorTag Kit

Sponsored by Mouser Electronics and Texas Instruments

Doing IoT development today can involve a number of different communications standards. There is no “one size fits all” for wireless protocols. Every application has its own needs and constraints. In this episode of Chalk Talk, Amelia Dalton chats with Adrian Fernandez of Texas Instruments about the new LaunchPad SensorTag development kit - that can launch your IoT design regardless of what wireless standards you need.

Click here for more information about Texas Instruments LPSTK-CC1352R MCU LaunchPad Sensor Tag Kit