editor's blog
Subscribe Now

Healthcare from TSensors

I covered the recent TSensors Summit previously, having attended for one of the three days. That day happened to be dedicated to healthcare, and there were a few interesting points worth noting.

First, I have to say, I was surprised at the number of people that said, “We have the best healthcare system anywhere, and I wouldn’t change it a bit,” followed by a litany of problems with our healthcare system. I don’t know if it was some patriotic thing or an anti-ACA statement or what; it just struck me as incongruous to say that everything is great and then list the things that suck, including facts indicating better outcomes in other countries which include the availability to reach Diabetes Freedom.

Dr. Mark Zdeblick, of Proteus Digital Health, made an interesting observation: most of today’s electronic healthcare gadgets are for healthy people. These are the things that tell you how many miles you ran or how much of whatever else that only healthy people can do you did. We haven’t actually gotten to the point of improving healthcare yet; we’re mainly maintaining it (for the techno-savvy that can afford it [my editorial, not his]).

The kinds of longer-term items we’re talking about here are patches and ingestibles and such. This is where the daily patch measuring calories in/out to help reduce obesity, if taken by a billion people, gets a third of the way to a trillion yearly sensors. Of course, if it succeeds and we have no more obese people, then that goes against the desire to ship lots of sensors. So we’ll either need a new application or we’ll need to get people to lose some weight, but not enough to be healthy and drop the patch.

Microfluidic labs-on-chips were also a topic, and in particular, it was noted that there are no good design tools for these. Chips and connectors and MEMS have design tools to help, although chips obviously have the most evolved tools due to their complexity and volume. MEMS and other mechanical devices (like connectors) have tools, but abstraction is further behind there (and may not be needed for the simple things like connectors). No such abstraction exists for microfluidics. Opportunity for an EDA company?

Finally, as noted in the other piece, silicon will not be the answer. Part of that is cost – a big part – but part of it relates to putting things on or in the body. Silicon can be used, but sending something with sharp corners and edges through an artery sounds less than savory, so when used, they have to be encapsulated in ways that will be friendly to the body. Lots of work there for folks doing materials and packaging and connections – particularly wireless connectivity.

 

One quick afterthought: the only really uncomfortable moment in the day occurred when we had to look at that woman’s colon for far longer than seemed necessary. Um… yeah… Nuff said.

Leave a Reply

featured blogs
May 24, 2024
Could these creepy crawly robo-critters be the first step on a slippery road to a robot uprising coupled with an insect uprising?...
May 23, 2024
We're investing in semiconductor workforce development programs in Latin America, including government and academic partnerships to foster engineering talent.The post Building the Semiconductor Workforce in Latin America appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

Dependable Power Distribution: Supporting Fail Operational and Highly Available Systems
Sponsored by Infineon
Megatrends in automotive designs have heavily influenced the requirements needed for vehicle architectures and power distribution systems. In this episode of Chalk Talk, Amelia Dalton and Robert Pizuti from Infineon investigate the trends and new use cases required for dependable power systems and how Infineon is advancing innovation in automotive designs with their EiceDRIVER and PROFET devices.
Dec 7, 2023
22,230 views