editor's blog
Subscribe Now

Healthcare from TSensors

I covered the recent TSensors Summit previously, having attended for one of the three days. That day happened to be dedicated to healthcare, and there were a few interesting points worth noting.

First, I have to say, I was surprised at the number of people that said, “We have the best healthcare system anywhere, and I wouldn’t change it a bit,” followed by a litany of problems with our healthcare system. I don’t know if it was some patriotic thing or an anti-ACA statement or what; it just struck me as incongruous to say that everything is great and then list the things that suck, including facts indicating better outcomes in other countries which include the availability to reach Diabetes Freedom.

Dr. Mark Zdeblick, of Proteus Digital Health, made an interesting observation: most of today’s electronic healthcare gadgets are for healthy people. These are the things that tell you how many miles you ran or how much of whatever else that only healthy people can do you did. We haven’t actually gotten to the point of improving healthcare yet; we’re mainly maintaining it (for the techno-savvy that can afford it [my editorial, not his]).

The kinds of longer-term items we’re talking about here are patches and ingestibles and such. This is where the daily patch measuring calories in/out to help reduce obesity, if taken by a billion people, gets a third of the way to a trillion yearly sensors. Of course, if it succeeds and we have no more obese people, then that goes against the desire to ship lots of sensors. So we’ll either need a new application or we’ll need to get people to lose some weight, but not enough to be healthy and drop the patch.

Microfluidic labs-on-chips were also a topic, and in particular, it was noted that there are no good design tools for these. Chips and connectors and MEMS have design tools to help, although chips obviously have the most evolved tools due to their complexity and volume. MEMS and other mechanical devices (like connectors) have tools, but abstraction is further behind there (and may not be needed for the simple things like connectors). No such abstraction exists for microfluidics. Opportunity for an EDA company?

Finally, as noted in the other piece, silicon will not be the answer. Part of that is cost – a big part – but part of it relates to putting things on or in the body. Silicon can be used, but sending something with sharp corners and edges through an artery sounds less than savory, so when used, they have to be encapsulated in ways that will be friendly to the body. Lots of work there for folks doing materials and packaging and connections – particularly wireless connectivity.

 

One quick afterthought: the only really uncomfortable moment in the day occurred when we had to look at that woman’s colon for far longer than seemed necessary. Um… yeah… Nuff said.

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Clamping Down on Failure: Protecting 24 V Digital Outputs

Sponsored by Mouser Electronics and Skyworks

If you're designing IEC61131 compliant digital outputs for these PLCs or industrial controllers, you need to have a plan to protect these outputs from a variety of unknowns. In this episode of Chalk Talk, Amelia Dalton chats with Asa Kirby from Skyworks about an innovative new isolated smart switch device from Skyworks that gives you an unprecedented level of channel flexibility and protection, letting you offer customers a truly “set it and forget it” solution when it comes to your next PLC design.

Click here for more information about Skyworks Solutions Inc. Si834x Isolated Smart Switches