editor's blog
Subscribe Now

Going Expensive to Reduce Interposer Cost

Imec has been  working 2,5D IC issues with a particular focus on optimizing costs and, in particular, test yields. Yields can take what might have been straightforward-looking cost numbers and make things not so clear.

In their work on interposers, Eric Beyne took a look at three different ways of routing the signals from a wide-I/O memory. These puppies have lots of connections – like, 1200 per chip. He explored three different ways of implementing the interposer to find out which had the best cost outlook. The idea was to connect two such interfaces, with four banks of 128 I/Os each. Each channel had 6 rows of 50 microbumps. Microbump pitch along a row was 40 µm; along a column it was 50 µm. The two simply needed to talk to each other on the interposer.

The cheapest, most traditional approach is to use PCB (or PWB) technology. An aggressive version would have 20-µm pitch and 15-µm vias. This approach resulted in an 8-layer board; you can see the layout below – lots of routing all over the place. Wire lengths were, on average, 180% of the die spacing.

 

Laminate.png

 

Next was a semi-additive copper process – more aggressive dimensions and more expensive. Line pitch was 10 µm; vias were 7 µm. the tighter routing allowed connectivity with only 4 layers, and the average wire length was 166% of the die spacing. You can see the slightly less colorful result below.

 

RDL.png

 

Finally, they took an expensive approach: damascene metal lines. Moving from the PCB fab to the silicon fab. But this got them down to 2-µm pitch with 1-µm vias, and that was enough to run wires straight across on 2 layers with no extra routing. In other words, wire lengths were equal to the die spacing. You can see this on the following picture.

 

Damascene.png

 

So what happens to the overall cost? The last one is nice, but expensive to build. And here is where yield comes in. Because the “most expensive” option uses only two layers, it has the best yield. And that yield more than compensates for the expensive processing, yielding the cheapest option.

 

They didn’t give out specific cost numbers (they typically reserve those for their participants), but the net result is that they believe the damascene approach to be the most effective.

 

 

 

Images courtesy Imec.

Leave a Reply

featured blogs
May 24, 2024
Could these creepy crawly robo-critters be the first step on a slippery road to a robot uprising coupled with an insect uprising?...
May 23, 2024
We're investing in semiconductor workforce development programs in Latin America, including government and academic partnerships to foster engineering talent.The post Building the Semiconductor Workforce in Latin America appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

PolarFire® SoC FPGAs: Integrate Linux® in Your Edge Nodes
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Diptesh Nandi from Microchip examine the benefits of PolarFire SoC FPGAs for edge computing applications. They explore how the RISC-V-based Architecture, asymmetrical multi-processing, and Linux-based reference solutions make these SoC FPGAs a game changer for edge computing applications.
Feb 6, 2024
14,732 views