editor's blog
Subscribe Now

Going Expensive to Reduce Interposer Cost

Imec has been  working 2,5D IC issues with a particular focus on optimizing costs and, in particular, test yields. Yields can take what might have been straightforward-looking cost numbers and make things not so clear.

In their work on interposers, Eric Beyne took a look at three different ways of routing the signals from a wide-I/O memory. These puppies have lots of connections – like, 1200 per chip. He explored three different ways of implementing the interposer to find out which had the best cost outlook. The idea was to connect two such interfaces, with four banks of 128 I/Os each. Each channel had 6 rows of 50 microbumps. Microbump pitch along a row was 40 µm; along a column it was 50 µm. The two simply needed to talk to each other on the interposer.

The cheapest, most traditional approach is to use PCB (or PWB) technology. An aggressive version would have 20-µm pitch and 15-µm vias. This approach resulted in an 8-layer board; you can see the layout below – lots of routing all over the place. Wire lengths were, on average, 180% of the die spacing.

 

Laminate.png

 

Next was a semi-additive copper process – more aggressive dimensions and more expensive. Line pitch was 10 µm; vias were 7 µm. the tighter routing allowed connectivity with only 4 layers, and the average wire length was 166% of the die spacing. You can see the slightly less colorful result below.

 

RDL.png

 

Finally, they took an expensive approach: damascene metal lines. Moving from the PCB fab to the silicon fab. But this got them down to 2-µm pitch with 1-µm vias, and that was enough to run wires straight across on 2 layers with no extra routing. In other words, wire lengths were equal to the die spacing. You can see this on the following picture.

 

Damascene.png

 

So what happens to the overall cost? The last one is nice, but expensive to build. And here is where yield comes in. Because the “most expensive” option uses only two layers, it has the best yield. And that yield more than compensates for the expensive processing, yielding the cheapest option.

 

They didn’t give out specific cost numbers (they typically reserve those for their participants), but the net result is that they believe the damascene approach to be the most effective.

 

 

 

Images courtesy Imec.

Leave a Reply

featured blogs
Feb 20, 2019
I have been working on DFM solutions for (too) many years and the objective hasn'€™t change: Detect or predict design-process weakpoints also known as hotspots, to limit systematic yield loss in... [[ Click on the title to access the full blog on the Cadence Community site...
Feb 20, 2019
Samtec'€™s Active Product Demonstrator proves 56 Gbps PAM4 based systems are fully realizable today. It'€™s a state-of-the-art prototype combining high-performance interconnects from Samtec and bleeding edge Credo silicon. All interconnect and silicon shown are available....
Feb 15, 2019
This year at DVCon US, Mentor is going to add some sizzle to our booth (#1005) during the exhibit hours. In addition to our stellar demo staff who are always available to answer questions and show you the latest capabilities of our tools, we’re also going to be hosting ...
Jan 25, 2019
Let'€™s face it: We'€™re addicted to SRAM. It'€™s big, it'€™s power-hungry, but it'€™s fast. And no matter how much we complain about it, we still use it. Because we don'€™t have anything better in the mainstream yet. We'€™ve looked at attempts to improve conven...