editor's blog
Subscribe Now

Qualcomm Plugs In @ Home

It almost sounds too good to be true. You plug in your new connectable gadget, and not only do you get power, but you’re also connected to high-speed data with no further wires.

People have talked about using home electrical wiring for communicating for a long time, but it doesn’t seem to have gotten much traction – at least not in the US. (Ok, not that I’ve noticed, anyway.) Given the big clunky unshielded wiring, I’ve more or less assumed (without really thinking about it) that they weren’t up to the high-data-rate tasks that we all count on now.

Wrong. Or so say the folks at Qualcomm. Yes, Qualcomm. I know, we think phones and wireless and unplugged with those guys, but their Atheros group has apparently been paying attention to things both wired and plugged. They’ve announced an SoC that supports HomePlug AV2, supplementing existing chips already available. This new QCA7500 gets them above gigabit speeds.

What’s unique about HomePlug is that it can support both narrowband (for Internet of Things) and wideband (for HD video or high-speed internet). The Qualcomm chip supports gigabit data throughout the house; no Cat 5 needed.

What really caught my attention was MIMO. MIMO? Really?? Like, beamforming WiFi sort of thing, with multiple antennae? On… a wire??   O_o

Well, it’s true. But it works only on three-plug systems. Both the live and neutral are used as channels; 2×2 is the only possible configuration. (And it ain’t going to work if your contractor or builder faked out the three-plug thing for the inspector without actually grounding it throughout the house…) SISO is, of course, also supported.

If you have a really big house, you can even use repeaters. Which, of course, would inject a repeated signal in all directions, slightly delayed from the original. Apparently that latency is very low, and doesn’t create an issue for receiving devices trying to capture a clean signal.

When I think of the equipment needed to deploy this technology, I think of stuff that you can go buy at Fry’s to install. And for new construction with clean, grounded wiring, in particular in the US, that’s a possible model. Just like we do with WiFi in our houses.

But there’s another model: the managed one. In this case, your high-speed data carrier actually does the installation and manages the network remotely. This has been done in old houses in Europe (where I would guess the after-the-fact wiring might be sketchier). Qualcomm actually seems more highly focused on this model.

To be clear, they don’t think this will supplant wireless; they see the two working in concert. In fact, it just occurs to me… for folks like me using a cable connection, the wireless router (which is wired to the cable modem, if not outright integrated with it) has to be near the cable connection, which may not be near where you want the signal. So you could run the signals on the power line and have the WiFi router pick it up elsewhere in the house for a stronger signal where you need it. (Why use WiFi when you have HomePlug? Well, for smartphones, for example… they’re not plugged in.)

As to the cost of this technology, they don’t see it as being a huge issue – unless we end up with too much proliferation of interfaces and protocols. If the industry can rally around a few, it should be OK.

You can learn more about Qualcomm’s chip in their release.

Leave a Reply

featured blogs
Dec 1, 2022
Raspberry Pi are known for providing lost-cost computing around the world. Their computers have been used by schools, small businesses, and even government call centers. One of their missions is to educate children about computers and to help them realize their potential thro...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Maximizing Power Savings During Chip Implementation with Dynamic Refresh of Vectors

Sponsored by Synopsys

Drive power optimization with actual workloads and continually refresh vectors at each step of chip implementation for maximum power savings.

Learn more about Energy-Efficient SoC Solutions

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Series Five Product Introduction

Sponsored by Mouser Electronics and Amphenol Aerospace

Size and weight are critical design considerations when it comes to military and aerospace applications. One way to minimize weight and size in these kinds of designs is to take a closer look at your choice of connectors. In this episode of Chalk Talk, Amelia Dalton chats with Anthony Annunziata from Amphenol Aerospace about the series five next generation connectors from Amphenol Aerospace. They investigate the size and weight advantages that these connectors bring to military and aerospace applications and how you can get started using the series five in your next design.

Click here for more information about Amphenol Aerospace Series Five Black Zinc-Nickel Circular Connectors