editor's blog
Subscribe Now

Qualcomm Plugs In @ Home

It almost sounds too good to be true. You plug in your new connectable gadget, and not only do you get power, but you’re also connected to high-speed data with no further wires.

People have talked about using home electrical wiring for communicating for a long time, but it doesn’t seem to have gotten much traction – at least not in the US. (Ok, not that I’ve noticed, anyway.) Given the big clunky unshielded wiring, I’ve more or less assumed (without really thinking about it) that they weren’t up to the high-data-rate tasks that we all count on now.

Wrong. Or so say the folks at Qualcomm. Yes, Qualcomm. I know, we think phones and wireless and unplugged with those guys, but their Atheros group has apparently been paying attention to things both wired and plugged. They’ve announced an SoC that supports HomePlug AV2, supplementing existing chips already available. This new QCA7500 gets them above gigabit speeds.

What’s unique about HomePlug is that it can support both narrowband (for Internet of Things) and wideband (for HD video or high-speed internet). The Qualcomm chip supports gigabit data throughout the house; no Cat 5 needed.

What really caught my attention was MIMO. MIMO? Really?? Like, beamforming WiFi sort of thing, with multiple antennae? On… a wire??   O_o

Well, it’s true. But it works only on three-plug systems. Both the live and neutral are used as channels; 2×2 is the only possible configuration. (And it ain’t going to work if your contractor or builder faked out the three-plug thing for the inspector without actually grounding it throughout the house…) SISO is, of course, also supported.

If you have a really big house, you can even use repeaters. Which, of course, would inject a repeated signal in all directions, slightly delayed from the original. Apparently that latency is very low, and doesn’t create an issue for receiving devices trying to capture a clean signal.

When I think of the equipment needed to deploy this technology, I think of stuff that you can go buy at Fry’s to install. And for new construction with clean, grounded wiring, in particular in the US, that’s a possible model. Just like we do with WiFi in our houses.

But there’s another model: the managed one. In this case, your high-speed data carrier actually does the installation and manages the network remotely. This has been done in old houses in Europe (where I would guess the after-the-fact wiring might be sketchier). Qualcomm actually seems more highly focused on this model.

To be clear, they don’t think this will supplant wireless; they see the two working in concert. In fact, it just occurs to me… for folks like me using a cable connection, the wireless router (which is wired to the cable modem, if not outright integrated with it) has to be near the cable connection, which may not be near where you want the signal. So you could run the signals on the power line and have the WiFi router pick it up elsewhere in the house for a stronger signal where you need it. (Why use WiFi when you have HomePlug? Well, for smartphones, for example… they’re not plugged in.)

As to the cost of this technology, they don’t see it as being a huge issue – unless we end up with too much proliferation of interfaces and protocols. If the industry can rally around a few, it should be OK.

You can learn more about Qualcomm’s chip in their release.

Leave a Reply

featured blogs
Jun 13, 2024
I've just been introduced to the DuoFlex 4K Dual-Screen Display from HalmaPixel, and now I'm drooling with desire all over my keyboard....

featured video

Unleashing Limitless AI Possibilities with FPGAs

Sponsored by Intel

Industry experts discuss real-world AI solutions based on Programmable Logic, or FPGAs. The panel talks about a new approach called FPGAi, what it is and how it will revolutionize how innovators design AI applications.

Click here to learn more about Leading the New Era of FPGAi

featured paper

Navigating design challenges: block/chip design-stage verification

Sponsored by Siemens Digital Industries Software

Explore the future of IC design with the Calibre Shift left initiative. In this paper, author David Abercrombie reveals how Siemens is changing the game for block/chip design-stage verification by moving Calibre verification and reliability analysis solutions further left in the design flow, including directly inside your P&R tool cockpit. Discover how you can reduce traditional long-loop verification iterations, saving time, improving accuracy, and dramatically boosting productivity.

Click here to read more

featured chalk talk

Power Gridlock
The power grid is struggling to meet the growing demands of our electrifying world. In this episode of Chalk Talk, Amelia Dalton and Jake Michels from YAGEO Group discuss the challenges affecting our power grids today, the solutions to help solve these issues and why passive components will be the heroes of grid modernization.
Nov 28, 2023
27,068 views