editor's blog
Subscribe Now

CEVA Goes for Base Stations

Mobile communications have been one of CEVA’s focus areas (others being audio and images). If you’re new to CEVA, they do DSP cores for SoCs, focusing on low power as a critical feature. (They have lots of hardware features, but at the end of the day, whether it’s a hardware accelerator or an optimized instruction set, it all leads to lower power and longer battery life.)

We’ve covered them before (albeit getting distracted by the incredible alphabet soup that characterizes this market). As complexity has grown, they’ve seen the need for multiple DSP cores, so they put together a multicore platform.

But most of their mobile effort was going into DSPs that would reside in a handset. And yes, handsets have being going multicore for lots of reasons. And with the proliferation of smartphones, they have to be the most abundant example of heterogeneous multicore. In other words, different cores for different purposes – applications, baseband, graphics, etc. This requires an asymmetric model, with every core having its own OS and memory image (possibly sharing some memory for message passing and such).

But now they’re going for more than just the handset: they’ve just introduced a new XC4500 family that focuses on mobile infrastructure – and, specifically, base stations. You might think this would just be a bigger version of what they use in the handset, which is the XC4000 family. But it’s not, because what happens in a base station is very different from what happens in a phone.

A handset is all about taking a single call or session or whatever and breaking it down to extract the content and send that content to the appropriate places in the phone. That’s not at all what a base station does; it manages traffic. It doesn’t care, for the most part, what’s happening with any particular call or session; it’s just making sure everything gets to the right place. This is, basically, packet processing.

So while the phone needs all these different processors to handle the different aspects of the content, the base station simply needs to be able to scale what it does to accommodate the amount of traffic it has to handle. Which means that, unlike the phone, it can benefit from a homogeneous multicore architecture using a symmetric approach (SMP). If one core can process x calls, then n cores can process n*x calls. More or less (yeah, I know it’s not quite that simple…).

Which makes the XC4500 look different from the XC4000, even though they’re on opposite ends of the same airwave. It’s much more like a router than it is like a phone. Because it is a router of sorts. Traffic management features allow multiple independent queues and provide built-in dynamic scheduling. Data for a specific task is stored in shared memory, so assigning it to a specific core merely involves sending a pointer rather than a time-consuming data copy. They have cache coherency infrastructure to keep all of the cores’ caches in synch as well.

You might wonder, by the way, what the opportunity is for new base stations. And, apparently, there’s not a lot of movement in the traditional fiber/cable-backhaul market, where your wireless call gets sent to the mothership over a wire. But new installations are starting to favor wireless backhaul over microwaves. That’s where they see things looking up.

You can find out more in their release.

Leave a Reply

featured blogs
May 27, 2020
Could life evolve on ice worlds, ocean worlds, ocean worlds covered in ice, halo worlds that are tidally locked with their sun, and rogue worlds without a sun? If so, what sort of life might it be?...
May 26, 2020
I get pleasure from good quality things. Quality is a vague term, but, to me, it is some combination of good design for usability, functionality and aesthetics, along with reliability and durability. Some of these factors can be assessed very quickly; others take time. For ex...
May 26, 2020
#robotcombat #combatrobots #robotwars #WeWantSeason5 #WeGotSeason5 These are some of the most popular hashtags used by a growing number of global BattleBots enthusiasts. Teams from all backgrounds design, build and test robots of all sizes for one purpose in mind: Robot Comba...
May 22, 2020
[From the last episode: We looked at the complexities of cache in a multicore processor.] OK, time for a breather and for some review. We'€™ve taken quite the tour of computing, both in an IoT device (or even a laptop) and in the cloud. Here are some basic things we looked ...

Featured Video

DesignWare 112G Ethernet PHY IP JTOL & ITOL Performance

Sponsored by Synopsys

This video shows the Synopsys 112G Ethernet PHY IP in TSMC’s N7 process passing the jitter and interference tolerance test at the IEEE-specified bit error rate (BER). The IP with leading power, performance, and area is available in a range of FinFET processes for high-performance computing SoCs.

Click here for more information

Featured Paper

Guide to LiDAR Sensors for Self-Driving Cars

Sponsored by Maxim Integrated

Take a closer look at how the technology fusion of cameras, radar, and LiDAR systems creates a near-human vision system for autonomous cars.

Click here to download the whitepaper