editor's blog
Subscribe Now

Germanium-Tin Channel

Imec recently issued a press release that, early on, mentioned a “junctionless transistor.” Now… as far as I can remember back, transistors always had junctions. So I completely locked up on the question of what a junctionless transistor even means.

I got a chance to ask them when visiting their site last week. Not only is it simple, but it’s beside the point of the release. What they’re calling a junctionless transistor might simply have been called a JFET back when I was in school. Just made differently. They laid down a layer of GeSn – a very thin one over “semi-insulating silicon” (not to be confused with semiconducting silicon, of course). They then laid a fin across it. This created a depletion-mode, or normally-on, FET, with the fin controlling whether the channel conducted or not.

Pretty straightforward, conceptually. But the point of the whole thing is how they created that GeSn channel. Incorporating tin in germanium is apparently not so easy. Solubility is low, and if temperatures get too high during the process, the tin can migrate around and agglomerate in chunks instead of remaining dispersed uniformly throughout.

They came up with a relatively low-temp solid-phase epitaxy process that achieved this. Solid-phase epitaxy is a process that involves laying down an amorphous version of the desired material, followed by an anneal that crystallizes the layer.

What’s useful about this is that mobility is increased by the tin, but the tin also affects the bandgap, adding more direct bandgap characteristic, which helps with LEDs and other photonic applications. The idea is that such devices could be built on the same chip as regular silicon transistors, or heck, you could probably build them all out of this, relying on the lasing capabilities where needed. This would provide better integration of the transition between photonic and computing domains.

You can find out more in their release.

Leave a Reply

featured blogs
Jul 25, 2021
https://youtu.be/cwT7KL4iShY Made on "a tropical beach" Monday: Aerospace and Defense Systems Day...and DAU Tuesday: 75 Years of the Microprocessor Wednesday: CadenceLIVE Cloud Panel... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jul 24, 2021
Many modern humans have 2% Neanderthal DNA in our genomes. The combination of these DNA snippets is like having the ghost of a Neanderthal in our midst....
Jul 23, 2021
Synopsys co-CEO Aart de Geus explains how AI has become an important chip design tool as semiconductor companies continue to innovate in the SysMoore Era. The post Entering the SysMoore Era: Synopsys Co-CEO Aart de Geus on the Need for AI-Designed Chips appeared first on Fro...
Jul 9, 2021
Do you have questions about using the Linux OS with FPGAs? Intel is holding another 'Ask an Expert' session and the topic is 'Using Linux with Intel® SoC FPGAs.' Come and ask our experts about the various Linux OS options available to use with the integrated Arm Cortex proc...

featured video

Adopt a Shift-left Methodology to Accelerate Your Product Development Process

Sponsored by Cadence Design Systems

Validate your most sophisticated SoC designs before silicon and stay on schedule. Balance your workload between simulation, emulation and prototyping for complete system validation. You need the right tool for the right job. Emulation meets prototyping -- Cadence Palladium and Protium Dynamic Duo for IP/SoC verification, hardware and software regressions, and early software development.

More information about Emulation and Prototyping

featured paper

Configure the charge and discharge current separately in a reversible buck/boost regulator

Sponsored by Maxim Integrated

The design of a front-end converter can be made less complicated when minimal extra current overhead is required for charging the supercapacitor. This application note explains how to configure the reversible buck/boost converter to achieve a lighter impact on the system during the charging phase. Setting the charge current requirement to the minimum amount keeps the discharge current availability intact.

Click to read more

featured chalk talk

Nordic Cellular IoT

Sponsored by Mouser Electronics and Nordic Semiconductor

Adding cellular connectivity to your IoT design is a complex undertaking, requiring a broad set of engineering skills and expertise. For most teams, this can pose a serious schedule challenge in getting products out the door. In this episode of Chalk Talk, Amelia Dalton chats with Kristian Sæther of Nordic Semiconductor about the easiest path to IoT cellular connectivity with the Nordic nRF9160 low-power system-in-package solution.

Click here for more information about Nordic Semiconductor nRF91 Cellular IoT Modules