editor's blog
Subscribe Now

Germanium-Tin Channel

Imec recently issued a press release that, early on, mentioned a “junctionless transistor.” Now… as far as I can remember back, transistors always had junctions. So I completely locked up on the question of what a junctionless transistor even means.

I got a chance to ask them when visiting their site last week. Not only is it simple, but it’s beside the point of the release. What they’re calling a junctionless transistor might simply have been called a JFET back when I was in school. Just made differently. They laid down a layer of GeSn – a very thin one over “semi-insulating silicon” (not to be confused with semiconducting silicon, of course). They then laid a fin across it. This created a depletion-mode, or normally-on, FET, with the fin controlling whether the channel conducted or not.

Pretty straightforward, conceptually. But the point of the whole thing is how they created that GeSn channel. Incorporating tin in germanium is apparently not so easy. Solubility is low, and if temperatures get too high during the process, the tin can migrate around and agglomerate in chunks instead of remaining dispersed uniformly throughout.

They came up with a relatively low-temp solid-phase epitaxy process that achieved this. Solid-phase epitaxy is a process that involves laying down an amorphous version of the desired material, followed by an anneal that crystallizes the layer.

What’s useful about this is that mobility is increased by the tin, but the tin also affects the bandgap, adding more direct bandgap characteristic, which helps with LEDs and other photonic applications. The idea is that such devices could be built on the same chip as regular silicon transistors, or heck, you could probably build them all out of this, relying on the lasing capabilities where needed. This would provide better integration of the transition between photonic and computing domains.

You can find out more in their release.

Leave a Reply

featured blogs
Jan 27, 2021
Why is my poor old noggin filled with thoughts of roaming with my friends through a post-apocalyptic dystopian metropolis ? Well, I'€™m glad you asked......
Jan 27, 2021
Here at the Cadence Academic Network, it is always important to highlight the great work being done by professors, and academia as a whole. Now that AWR software solutions is a part of Cadence, we... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 27, 2021
Super-size. Add-on. Extra. More. We see terms like these a lot, whether at the drive through or shopping online. There'€™s always something else you can add to your order or put in your cart '€“ and usually at an additional cost. Fairly certain at this point most of us kn...
Jan 27, 2021
Cloud computing security starts at hyperscale data centers; learn how embedded IDE modules protect data across interfaces including PCIe 5.0 and CXL 2.0. The post Keeping Hyperscale Data Centers Safe from Security Threats appeared first on From Silicon To Software....

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

Featured Chalk Talk

Maxim's First Secure Micro with ChipDNA PUF Technology

Sponsored by Mouser Electronics and Maxim Integrated

Most applications today demand security, and that starts with your microcontroller. In order to get a truly secure MCU, you need a root of trust such as a physically unclonable function (PUF). In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis of Maxim Integrated about how the Maxim MAX32520 MCU with PUF can secure your next design.

Click here for more info about Amphenol RF 5G Wireless Connectors