editor's blog
Subscribe Now

Isn’t Sensor Fusion CPU-Agnostic?

Sensor fusion is algorithms. And these algorithms are typically executed as software. So that should be simple, right?

Just get your sensor fusion libraries from whomever you prefer (could be the sensor vendor, could be one of the sensor-agnostic folks), and then run it in the processor of your choice.

That processor could be the AP in a phone, although more and more that’s deprecated in favor of sensor hubs and other local, less power-hungry resources. Largely microcontrollers. And there shouldn’t really be any dependence on the specific computing platform chosen – as long as it has the resources to handle the algorithms. Right?

So I was a bit surprised when I saw that Movea and ST had collaborated to make Movea’s sensor fusion available on a very specific ST microcontroller: the STM32F401. Wouldn’t Movea’s stuff work on any ST microcontroller? Or anyone else’s, for that matter?

The answer is yes. Turns out that the collaboration alluded to in the announcement reflected work that Movea did to optimize their algorithms for that particular microcontroller. So the implication would be that, although you could run the algorithms on other ST microcontrollers, for example, they would run most efficiently on this particular one. Says ST’s Michael Markowitz, “This is precisely the result of a custom optimization by Movea to perfectly map the F401, which has an architecture that is well suited to performing sensor fusion at very low power.”

And, as such, ST would appear to be positioning that particular microcontroller as its preferred sensor hub platform. But there’s nothing that says you can’t use a different one.

You can find out more about this particular combination in the ST/Movea release.

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general -- and employing them to perform masking, bit testing, and bit setting/clearing operations in particular -- can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: Fundamentals on the Modern Approach

Sponsored by Maxim Integrated

Learn about the fundamental concepts behind modern cryptography, including how symmetric and asymmetric keys work to achieve confidentiality, identification and authentication, integrity, and non-repudiation.

Click here to download the whitepaper

Featured Chalk Talk

The Future of Automotive Interconnects

Sponsored by Mouser Electronics and Molex

The modern automobile is practically a data center on wheels, with countless processors, controllers, sensors, and intelligent systems that need to communicate reliably. Choosing the right interconnect solutions is front and center in the design of these complex systems. In this episode of Chalk Talk, Amelia Dalton chats with Rudy Waluch of Molex about interconnect solutions for today’s automotive designs.

Click here for more information about about Molex Transportation Solutions