editor's blog
Subscribe Now

Isn’t Sensor Fusion CPU-Agnostic?

Sensor fusion is algorithms. And these algorithms are typically executed as software. So that should be simple, right?

Just get your sensor fusion libraries from whomever you prefer (could be the sensor vendor, could be one of the sensor-agnostic folks), and then run it in the processor of your choice.

That processor could be the AP in a phone, although more and more that’s deprecated in favor of sensor hubs and other local, less power-hungry resources. Largely microcontrollers. And there shouldn’t really be any dependence on the specific computing platform chosen – as long as it has the resources to handle the algorithms. Right?

So I was a bit surprised when I saw that Movea and ST had collaborated to make Movea’s sensor fusion available on a very specific ST microcontroller: the STM32F401. Wouldn’t Movea’s stuff work on any ST microcontroller? Or anyone else’s, for that matter?

The answer is yes. Turns out that the collaboration alluded to in the announcement reflected work that Movea did to optimize their algorithms for that particular microcontroller. So the implication would be that, although you could run the algorithms on other ST microcontrollers, for example, they would run most efficiently on this particular one. Says ST’s Michael Markowitz, “This is precisely the result of a custom optimization by Movea to perfectly map the F401, which has an architecture that is well suited to performing sensor fusion at very low power.”

And, as such, ST would appear to be positioning that particular microcontroller as its preferred sensor hub platform. But there’s nothing that says you can’t use a different one.

You can find out more about this particular combination in the ST/Movea release.

Leave a Reply

featured blogs
Dec 2, 2020
The folks at LEVL are on a mission is to erase your network footprint. Paradoxically, they do this by generating their own 48-bit LEVL-IDs for your devices....
Dec 2, 2020
To arrive at your targeted and optimized PPA, you will need to execute several Innovus runs with a variety of design parameters, commands, and options. You will then need to analyze the data which... [[ Click on the title to access the full blog on the Cadence Community site...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

AI SoC Chats: Scaling AI Systems with Die-to-Die Interfaces

Sponsored by Synopsys

Join Synopsys Interface IP expert Manmeet Walia to understand the trends around scaling AI SoCs and systems while minimizing latency and power by using die-to-die interfaces.

Click here for more information about DesignWare IP for Amazing AI

featured paper

Exploring advancements in industrial and automotive markets with 60-GHz radar

Sponsored by Texas Instruments

The industrial and automotive markets have a tremendous need for innovative sensing technologies to help buildings, cities and automobiles sense the world around them and make more intelligent decisions.

Click here to read the article

Featured Chalk Talk

Maxim's First Secure Micro with ChipDNA PUF Technology

Sponsored by Mouser Electronics and Maxim Integrated

Most applications today demand security, and that starts with your microcontroller. In order to get a truly secure MCU, you need a root of trust such as a physically unclonable function (PUF). In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis of Maxim Integrated about how the Maxim MAX32520 MCU with PUF can secure your next design.

Click here for more info about Amphenol RF 5G Wireless Connectors