editor's blog
Subscribe Now

Isn’t Sensor Fusion CPU-Agnostic?

Sensor fusion is algorithms. And these algorithms are typically executed as software. So that should be simple, right?

Just get your sensor fusion libraries from whomever you prefer (could be the sensor vendor, could be one of the sensor-agnostic folks), and then run it in the processor of your choice.

That processor could be the AP in a phone, although more and more that’s deprecated in favor of sensor hubs and other local, less power-hungry resources. Largely microcontrollers. And there shouldn’t really be any dependence on the specific computing platform chosen – as long as it has the resources to handle the algorithms. Right?

So I was a bit surprised when I saw that Movea and ST had collaborated to make Movea’s sensor fusion available on a very specific ST microcontroller: the STM32F401. Wouldn’t Movea’s stuff work on any ST microcontroller? Or anyone else’s, for that matter?

The answer is yes. Turns out that the collaboration alluded to in the announcement reflected work that Movea did to optimize their algorithms for that particular microcontroller. So the implication would be that, although you could run the algorithms on other ST microcontrollers, for example, they would run most efficiently on this particular one. Says ST’s Michael Markowitz, “This is precisely the result of a custom optimization by Movea to perfectly map the F401, which has an architecture that is well suited to performing sensor fusion at very low power.”

And, as such, ST would appear to be positioning that particular microcontroller as its preferred sensor hub platform. But there’s nothing that says you can’t use a different one.

You can find out more about this particular combination in the ST/Movea release.

Leave a Reply

featured blogs
Mar 30, 2023
Damen is an international shipbuilding group with more than 50 shipyards in over 120 countries. While bare hull resistance simulations have been their bread and butter for a long time, they're now looking at more complex simulations such as propulsion and maneuvering. With th...
Mar 29, 2023
Explore the new chip design frontier of AI-powered EDA tools and see how our Synopsys.ai chip design software redefines chip design, verification, and testing. The post AI Is Driving a New Frontier in Chip Design appeared first on New Horizons for Chip Design....
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

Power Multiplexing with Discrete Components
Sponsored by Mouser Electronics and Toshiba
Power multiplexing is a vital design requirement for a variety of different applications today. In this episode of Chalk Talk, Amelia Dalton chats with Talayeh Saderi from Toshiba about what kind of power multiplex solution would be the best fit for your next design. They discuss five unique design considerations that we should think about when it comes to power multiplexing and the benefits that high side gate drivers bring to power multiplexing.
Sep 22, 2022
24,083 views