editor's blog
Subscribe Now

Isn’t Sensor Fusion CPU-Agnostic?

Sensor fusion is algorithms. And these algorithms are typically executed as software. So that should be simple, right?

Just get your sensor fusion libraries from whomever you prefer (could be the sensor vendor, could be one of the sensor-agnostic folks), and then run it in the processor of your choice.

That processor could be the AP in a phone, although more and more that’s deprecated in favor of sensor hubs and other local, less power-hungry resources. Largely microcontrollers. And there shouldn’t really be any dependence on the specific computing platform chosen – as long as it has the resources to handle the algorithms. Right?

So I was a bit surprised when I saw that Movea and ST had collaborated to make Movea’s sensor fusion available on a very specific ST microcontroller: the STM32F401. Wouldn’t Movea’s stuff work on any ST microcontroller? Or anyone else’s, for that matter?

The answer is yes. Turns out that the collaboration alluded to in the announcement reflected work that Movea did to optimize their algorithms for that particular microcontroller. So the implication would be that, although you could run the algorithms on other ST microcontrollers, for example, they would run most efficiently on this particular one. Says ST’s Michael Markowitz, “This is precisely the result of a custom optimization by Movea to perfectly map the F401, which has an architecture that is well suited to performing sensor fusion at very low power.”

And, as such, ST would appear to be positioning that particular microcontroller as its preferred sensor hub platform. But there’s nothing that says you can’t use a different one.

You can find out more about this particular combination in the ST/Movea release.

Leave a Reply

featured blogs
May 24, 2024
Could these creepy crawly robo-critters be the first step on a slippery road to a robot uprising coupled with an insect uprising?...
May 23, 2024
We're investing in semiconductor workforce development programs in Latin America, including government and academic partnerships to foster engineering talent.The post Building the Semiconductor Workforce in Latin America appeared first on Chip Design....

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

It’s the little things that get you; Light to Voltage Converters
In this episode of Chalk Talk, Amelia Dalton and Ed Mullins from Analog Devices chat about the what, where, and how of photodiode amplifiers. They discuss the challenges involved in designing these kinds of components, the best practices for analyzing the stability of photodiode amplifiers, and how Analog Devices can help you with your next photodiode amplifier design.
Apr 22, 2024
5,179 views