editor's blog
Subscribe Now

New Synopsys DFT Offerings

It’s ITC time, and this is when many of the EDA and test folks roll out their new stuff. True to this pattern, Synopsys has announced two new offerings, one of which allows faster SoC testing, the other allowing faster design of the test infrastructure in an SoC.

The first is a rather significant upgrade to their design-for-test (DFT) offering. Called DFTMAX Ultra, it’s a from-the-ground-up revamp of their test compression technology. It addresses compression, test speed, and the number of test pins.

They’ve completely redone their compressions scheme, resulting in 2-3X better compression. This includes improvements in fault models (since more subtle types of faults need to be caught now) as well as better handling of X (don’t know/care) values, allowing better propagation of fault values to outputs without being masked by some X.

They’ve also pipelined their engines so that they can be clocked faster: up to 60 MHz. And instead of the old model, where you load up a pattern, test it, and then unload it, you can now run tests in a streaming mode. So you don’t wait until everything is loaded to test, and you don’t wait until everything is unloaded to start the next test. Better – and less – use of test time.

They also allow better control over how many test pins you want to use. This is becoming more of an issue for test beds that do “multi-site” testing. If a given number of pins is now going to drive two chips instead of one, then each chip has to be able to live with half of those pins instead of all of them. So you can dial the number of pins down all the way to two. The compression goes up, of course, when pins come down, so there is a tradeoff, but the tool gives you that capability.

Combining these improvements together gives a test performance improvement of 20X (even up to 30X for some designs).

Separately, they’ve announced a product addressing the integration of IP tests into a full-on SoC test scheme; they call it the STAR Hierarchical System. The issue is that you buy a piece of IP that comes with test vectors and such so that you can validate it. But that IP will eventually be buried inside your SoC without direct IP I/O access to the tester (most likely). So you have to be able to fold all of the IP together into a single SoC set of tests.

The STAR hierarchical system helps perform this integration by setting up an infrastructure of “servers” and wrappers for managing the individual IP tests.

CS3266_Graphic_web_red.jpg

 

You can access IP blocks for testing and debug either on an IP block level, a subsystem level, or at the level of the SoC. The system is P1687 compatible for efficient debug, and it supports e-fuse programming for calibration.

 

Since the tests for each IP block are independent of the tests for other IP blocks, you can save test time by running different IP block tests in parallel. Their system helps you schedule which runs alongside which to optimize the test runs.

 

So while DFTMAX Ultra is focused on making an actual test run faster, the STAR Hierarchical System is focused on making it easier to create the test infrastructure and test vectors during design time.

 

You can find out more about both products in their announcements: DFTMAX Ultra here and STAR Hierarchical System here.

Leave a Reply

featured blogs
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Silicon Lifecycle Management Paradigm Shift

Sponsored by Synopsys

An end-to-end platform solution, Silicon Lifecycle Management leverages existing, mature, world-class technologies within Synopsys. This exciting new concept will revolutionize the semiconductor industry and how we manage silicon design. For the first time, designers can look inside silicon chip devices from the moment the design is created to the point at which they end their life.

Click here to learn more about Silicon Lifecycle Management

featured paper

Authenticate Automotive Endpoints for Genuine Parts

Sponsored by Maxim Integrated (now part of Analog Devices)

Learn how to implement the DS28E40 Deep Cover 1-Wire Authenticator in a system to provide authentication for endpoints such as optical cameras, headlamps, EV Batteries, occupancy sensors, steering wheels, and a myriad of other automotive applications.

Click to read more

featured chalk talk

BLDC Applications and Product Solutions

Sponsored by Mouser Electronics and ON Semiconductor

In many ways, Industry 4.0 is encouraging innovation in the arena of brushless motor design. In this episode of Chalk Talk, Amelia Dalton chats with CJ Waters of ON Semiconductor about the components involved in brushless motor design and how new applications like collaborative robots can take advantage of the benefits of BLDCs.

Click here for more information about ON Semiconductor Brushless DC Motor Control Solutions