editor's blog
Subscribe Now

Two Ways to Tune an Antenna

We’ve looked at a couple of companies focusing on improving the performance of cell phone antennas in real time as conditions change. WiSpry (MEMS) and Peregrine (SOS CMOS) were two such examples. But Cavendish Kinetics came into the picture as well, and it turns out that there’s another layer of nuance as to what these companies do.

According to Cavendish, there are two ways to improve antenna performance: tune the impedance and tune the frequency. In the former case, you have an antenna that has to work with multiple frequencies, but is not specifically optimized for all of those frequencies. But as conditions or utilized bands change, the impedance matching may not be optimal. So companies like WiSpry and Peregrine provide capacitor networks that allow real-time tweaking of the impedance to reduce signal loss.

But Cavendish Kinetics claims to be doing something different: the capacitor arrays they create aren’t for adjusting the impedance; they’re for re-centering the frequency of the antenna. While they say that impedance tuning can improve the signal by 20% or so, they claim that they can get a 2X improvement in signal strength simply by tuning the antenna to whichever frequency is in use at a particular time.

We’ll look more at the specifics of how they create their capacitor arrays in a future story, but that’s secondary to the fact that they’re actually trying to solve a different problem than folks that, on the surface, would appear to be doing the same thing.

Leave a Reply

featured blogs
Oct 25, 2020
https://youtu.be/_xItRYHmGPw Made on my balcony (camera Carey Guo) Monday: The Start of the Arm Era Tuesday: The Gen Arm 2Z Ambassadors Wednesday: CadenceLIVE India: Best Paper Awards Thursday:... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through-hole products, or a single or double row surface mount with a larger centerline rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and con...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...

featured video

Demo: Low-Power Machine Learning Inference with DesignWare ARC EM9D Processor IP

Sponsored by Synopsys

Applications that require sensing on a continuous basis are always on and often battery operated. In this video, the low-power ARC EM9D Processors run a handwriting character recognition neural network graph to infer the letter that is written.

Click here for more information about DesignWare ARC EM9D / EM11D Processors

featured Paper

New package technology improves EMI and thermal performance with smaller solution size

Sponsored by Texas Instruments

Power supply designers have a new tool in their effort to achieve balance between efficiency, size, and thermal performance with DC/DC power modules. The Enhanced HotRod™ QFN package technology from Texas Instruments enables engineers to address design challenges with an easy-to-use footprint that resembles a standard QFN. This new package type combines the advantages of flip-chip-on-lead with the improved thermal performance presented by a large thermal die attach pad (DAP).

Click here to download the whitepaper

Featured Chalk Talk

TensorFlow to RTL with High-Level Synthesis

Sponsored by Cadence Design Systems

Bridging the gap from the AI and data science world to the RTL and hardware design world can be challenging. High-level synthesis (HLS) can provide a mechanism to get from AI frameworks like TensorFlow into synthesizable RTL, enabling the development of high-performance inference architectures. In this episode of Chalk Talk, Amelia Dalton chats with Dave Apte of Cadence Design Systems about doing AI design with HLS.

More information