editor's blog
Subscribe Now

A Different Spin on Job Loss

In a discussion with Teledyne DALSA about their MIDIS MEMS process, we spent a few moments discussing how the ASIC die and the MEMS die are mated together. With this technology, the MEMS die has landing pads and the ASIC die gets micro-bumped and flipped and mated to the landing pads.

The question was whether this was done wafer-to-wafer or using known-good dice. The answer was wafer-to-wafer, since yield allows it and the costs are much lower. All pretty much reasonable reasoning.

But then we turned into somewhat more surprising territory. The reason it’s cheaper is that it’s a whole lot easier for a robot to take a wafer, invert it, align it, and stick it onto the receiving MEMS wafer. If you take a known-good-dice approach, then you first have to test the ASIC wafer to figure out which ones are good, then saw the thing up, and then pick out the good dice. You then have to place them on the waiting MEMS dice (which would presumably still be in full wafer form), placing them only on MEMS dice that have been shown to work by whatever testing could be done at the wafer level.

This is a lot of work and requires much more worker intervention than the robotic wafer-to-wafer process. More specifically, it requires more workers. Which costs more. We’re used to casting aside jobs with technology because, in the emotion-and-ethic-free world of finance, the dollar (or your favorite currency) is king and is all that matters. If jobs suffer while I make more money, it’s not my problem (because it’s not my job suffering).

It was as if they wanted to address this potential conscience twinge that they went one step further to justify the fewer-workers approach, and it went like this: These things are assembled in Southeast Asia. Southeast Asia has a bad reputation for employing child laborers. So by eliminating the jobs, we reduce the problem of child labor.

Bet you didn’t see that one coming! Nice to know we’re doing something good for the world…

Leave a Reply

featured blogs
Jan 25, 2021
A mechanical look at connector skew in your systems.  Electrical and Mechanical requirements collide when looking at interconnects in your electrical system. What can you do about it, how do you plan for it, and how do you pick the most rugged solution that still carries...
Jan 25, 2021
There is a whole portfolio of official "best of CES" awards, 14 of them this year. Of course, every publication lists its own best-of list, but the official CES awards are judged by... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

featured chalk talk

PolarFire SoC FPGA Family

Sponsored by Mouser Electronics and Microchip

FPGA SoCs can solve numerous problems for IoT designers. Now, with the growing momentum behind RISC-V, there are FPGA SoCs that feature RISC-V cores as well as low-power, high-security, and high-reliability. In this episode of Chalk Talk, Amelia Dalton chats with KK from Microchip Technology about the new PolarFire SoC family that is ideal for demanding IoT endpoint applications.

Click here for more information about Microchip Technology PolarFire® SoC FPGA Icicle Kit