editor's blog
Subscribe Now

A Software View of Hardware

One of the defining characteristics of an embedded system is that you should have no expectations about what it’s made of or how it’s arranged. There are no architecture standards, and that’s how everyone likes it.

Well, ok; not everyone: the poor dudes writing tools for embedded systems have a heck of a challenge dealing with all the variety. And, frankly, some of those tools come full circle and help architects decide how to optimize their systems. But if each variant takes a major project to configure the tools, then that’s not going to work.

Of course, we could try and standardize hardware architectures…

Yeah, good luck getting that one to go anywhere.

Instead, there’s a middle ground being explored by the Multicore Association: it’s called SHIM, which stands for Software-Hardware Interface for Multi-many-core. The idea is to give software tools a way to discover the hardware configuration via an XML file.

This is one of those projects where “restraint” is the name of the game. It would be really easy for something like this to get out of control and far exceed its scope, but the folks driving this – in particular Masaki Gondo of eSOL – are taking great pains to define what this is and isn’t.

For instance, it’s not a complete hardware description of everything in the system. It’s restricted to documenting hardware that matters to software, and it describes the hardware in a manner that makes sense to software (unlike IP-XACT, which is intended for hardware designers). Things like defining the type and number of processor cores, synchronization mechanisms, inter-core communications, memory architecture, interconnect, and virtualization scheme.

They also take pains to ensure that this is not a functional hardware model – you’re not going to plug it into some simulator and have it work. It’s just a description. It’s also not a tool in and of itself; it’s a format for data that can be consumed by tools that others create. So there’s really no threat to anyone in the ecosystem.

It’s partly intended to allow performance estimation of a given architecture, but it won’t be 100% cycle-accurate. It will help with the creation of – but will not auto-create – hardware abstraction layers.

The specific news here is that a working group is starting up to define the details; the first spec should be out sometime next year. You can find more info on the effort and how to participate in their release.

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

DIN Rail Power Solutions' Usage and Advantages

Sponsored by Mouser Electronics and MEAN WELL

DIN rail power supplies with their clean installation and quiet fanless design can be a great solution to solve the common power supply concerns that come along with industrial and building automation applications. In this episode of Chalk Talk, Kai Li from MEAN WELL and Amelia Dalton discuss the variety of benefits that DIN rail power supplies can bring to your next design. They examine how these power supplies can help with power buffering, power distribution, redundancy and more.

Click here for more information about MEAN WELL DIN Rail Power Supplies