editor's blog
Subscribe Now

A Different Kind of Current

We’ve seen a number of different ways in which magnetic interactions with electron current can be put to use thanks to the concept of spin. Those magnets are also conductors, so electrons are moving through materials having various (or no) magnetic polarization.

You might wonder why I went through the trouble to specify “electron” current. I mean, that’s what current is: a flow of electrons. Right? Well, it turns out there’s another more subtle current. Or perhaps better to say pseudo-current, since no actual object is moving. You can have a spin current too. Who knew!

This is really more of an “influencing” thing: the spin of one electron can be transferred to its neighbor, thence to another neighbor, and so forth. This is spin (or spin torque) transfer. So you’ve got this spin alignment thing going on, and it flows out from wherever it started. Think of it as spin going viral. So it acts like a current, even though it’s only the influence that’s moving; the electrons themselves aren’t.

Actually, the electrons can be moving while this happens; they’re just not moving in the same direction that the spin is. This came up in an article about work done at Japan’s Tohoku University to identify yet another type of spin interaction, which they call Spin Hall Magnetoresistance. While the previous types of magnetoresistance we’ve seen involve currents going through the magnets, this involves insulating magnets adjacent to an electron-current-carrying metal.

The fundamental idea is that spin from the current can transfer into the magnet even though the electrons themselves can’t move into the magnet. When that happens, it’s sort of like an energy leak from the wire, and it reduces the current in the metal, which, given a constant potential driving the wire, makes it feel like a higher resistance.

There are apparently two things going on that make this work. One is a polarization of spins in the wire, analogous to the charge polarization due to the normal Hall effect. In this case, instead of getting opposing charges on each side of the wire, you get opposing spins. So the side that abuts the magnet will have an accumulation of electrons with a particular spin.

The second piece has to do with what they call scattering, but fundamentally, they found that the spin at the metal/magnet boundary can only transfer into the magnet if the magnet is polarized perpendicular to the accumulated spin. In other words, you can, in theory, modulate the apparent resistance of the wire by changing the field direction of the adjacent insulating magnet.

Granted, it’s a small effect: the change is around 0.01%. But it’s yet another mechanism that might have promise for… something. And, fundamentally, it’s the first I’ve run up against this concept of a spin current. So it piqued my interest on that score too.

If it’s piqued yours, you can get more detail in this Physics article.

Leave a Reply

featured blogs
Oct 19, 2020
Sometimes, you attend an event and it feels like you are present at the start of a new era that will change some aspect of the technology industry. Of course, things don't change overnight. One... [[ Click on the title to access the full blog on the Cadence Community si...
Oct 16, 2020
Another event popular in the tech event circuit is PCI-SIG® DevCon. While DevCon events are usually in-person around the globe, this year, like so many others events, PCI-SIG DevCon is going virtual. PCI-SIG DevCons are members-driven events that provide an opportunity to le...
Oct 16, 2020
If you said '€œYes'€ to two of the items in the title of this blog -- specifically the last two -- then read on......
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

Featured Paper

Four Ways to Improve Verification Performance and Throughput

Sponsored by Cadence Design Systems

Learn how to address your growing verification needs. Hear how Cadence Xcelium™ Logic Simulation improves your design’s performance and throughput: improving single-core engine performance, leveraging multi-core simulation, new features, and machine learning-optimized regression technology for up to 5X faster regressions.

Click here for more information about Xcelium Logic Simulation

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

Consumer Plus 3D NAND SD Cards

Sponsored by Panasonic

3D NAND has numerous advantages, like larger capacity, lower cost, and longer lifespan. In many systems, 3D NAND in SD card form is a smart move. In this episode of Chalk Talk, Amelia Dalton chats with Brian Donovan about SD 3D NAND in applications such as automotive.

Click here for more information about Panasonic Consumer Plus Grade 3D NAND SD Cards