editor's blog
Subscribe Now

IMUs Feature Quartz

Epson has recently made a series of announcements in the IMU space, including a new V-series that they claim features the “world’s smallest IMU” (defined as “The smallest IMU among high-performance IMUs having gyro bias instability of 10 dph or less (as of the beginning of August 2013, according to Epson’s research)”). That would be 10x12x4 mm.

Why are they not comparing themselves to the silicon guys? Because their fundamental sense element material isn’t silicon; it’s quartz, branded as QMEMS.  At least for the gyroscope, which they make. The accelerator in the IMU comes from someone else; they’ve not disclosed that partner. (And they say that no one has yet successfully made a quartz-based accelerator.)

So what’s with this quartz stuff, anyway? And isn’t quartz simply SiO2, like the SiO2 on silicon chips? Well, yes and no. It is SiO2, but it’s crystalline – the dielectric layers on chips are not. They grow a specific quartz crystal – the fabrication process includes an anneal that lasts for months in a 30-m-high autoclave. The cut they make off the crystal also determines the temperature stability.

The benefit is a high-quality (i.e., high Q), stable output that requires less conditioning than a silicon element would need. In fact, they say that silicon folks sometimes use redundant elements and average them to stabilize the result. This is also different from Qualtré’s approach, which uses a resonating disk: Epson’s element vibrates, but not at resonance.

Of course, this isn’t going to compete with the gyro that’s going into your phone when it comes to price. This is a more upscale version for use where accuracy commands a premium. One application they mentioned that can take advantage is SATCOM OTM – “on the move” – used for maintaining a satellite linkup while moving. The IMU is needed for fine alignment.

They’ve announced a G-series of other industrial IMUs as well that use their older technology. The difference with the V series is the new sense element – they say they can fit eight of the new ones in the space required by one of the old ones (which they claim was already pretty small). They also don’t need mechanical isolation or vacuum chambers like some larger high-performance IMUs need.

You can find more performance detail on the G-series device here, and on the V series here.

Leave a Reply

featured blogs
Dec 1, 2022
Raspberry Pi are known for providing lost-cost computing around the world. Their computers have been used by schools, small businesses, and even government call centers. One of their missions is to educate children about computers and to help them realize their potential thro...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Maximizing Power Savings During Chip Implementation with Dynamic Refresh of Vectors

Sponsored by Synopsys

Drive power optimization with actual workloads and continually refresh vectors at each step of chip implementation for maximum power savings.

Learn more about Energy-Efficient SoC Solutions

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Chipageddon: What's Happening, Why It's Happening and When Will It End

Sponsored by Mouser Electronics and Digi

Semiconductors are an integral part of our design lives, but supply chain issues continue to upset our design processes. In this episode of Chalk Talk, Ronald Singh from Digi and Amelia Dalton investigate the variety of reasons behind today’s semiconductor supply chain woes. They also take a closer look at how a system-on-module approach could help alleviate some of these issues and how you can navigate these challenges for your next design.

Click here for more information about DIGI ConnectCore 8M Mini