editor's blog
Subscribe Now

IMUs Feature Quartz

Epson has recently made a series of announcements in the IMU space, including a new V-series that they claim features the “world’s smallest IMU” (defined as “The smallest IMU among high-performance IMUs having gyro bias instability of 10 dph or less (as of the beginning of August 2013, according to Epson’s research)”). That would be 10x12x4 mm.

Why are they not comparing themselves to the silicon guys? Because their fundamental sense element material isn’t silicon; it’s quartz, branded as QMEMS.  At least for the gyroscope, which they make. The accelerator in the IMU comes from someone else; they’ve not disclosed that partner. (And they say that no one has yet successfully made a quartz-based accelerator.)

So what’s with this quartz stuff, anyway? And isn’t quartz simply SiO2, like the SiO2 on silicon chips? Well, yes and no. It is SiO2, but it’s crystalline – the dielectric layers on chips are not. They grow a specific quartz crystal – the fabrication process includes an anneal that lasts for months in a 30-m-high autoclave. The cut they make off the crystal also determines the temperature stability.

The benefit is a high-quality (i.e., high Q), stable output that requires less conditioning than a silicon element would need. In fact, they say that silicon folks sometimes use redundant elements and average them to stabilize the result. This is also different from Qualtré’s approach, which uses a resonating disk: Epson’s element vibrates, but not at resonance.

Of course, this isn’t going to compete with the gyro that’s going into your phone when it comes to price. This is a more upscale version for use where accuracy commands a premium. One application they mentioned that can take advantage is SATCOM OTM – “on the move” – used for maintaining a satellite linkup while moving. The IMU is needed for fine alignment.

They’ve announced a G-series of other industrial IMUs as well that use their older technology. The difference with the V series is the new sense element – they say they can fit eight of the new ones in the space required by one of the old ones (which they claim was already pretty small). They also don’t need mechanical isolation or vacuum chambers like some larger high-performance IMUs need.

You can find more performance detail on the G-series device here, and on the V series here.

Leave a Reply

featured blogs
Feb 25, 2021
At Cadence, we pride ourselves on creating and sustaining a company culture, that drives innovation and business success. To continue our series of EMEA team members'€™ interviews, we spoke with Aspa... [[ Click on the title to access the full blog on the Cadence Community...
Feb 25, 2021
Learn how ASIL-certified EDA tools help automotive designers create safe, secure, and reliable Advanced Driver Assistance Systems (ADAS) for smart vehicles. The post Upping the Safety Game Plan for Automotive SoCs appeared first on From Silicon To Software....
Feb 24, 2021
mmWave applications are all the rage. Why? Simply put, the 5G tidal wave is coming. Also, ADAS systems use 24 GHz for SRR applications and 77 GHz for LRR applications. Obviously, the world needs mmWave tech! Traditional mmWave technology spans the 30 – 300 GHz frequency...
Feb 24, 2021
Crowbits are programmable, LEGO-compatible, magnetically-coupled electronic blocks to interest kids in electronics and computing and facilitate their STEM activities....

featured video

Designing your own Processor with ASIP Designer

Sponsored by Synopsys

Designing your own processor is time-consuming and resource intensive, and it used to be limited to a few experts. But Synopsys’ ASIP Designer tool allows you to design your own specialized processor within your deadline and budget. Watch this video to learn more.

Click here for more information

featured paper

Functional Safety-Relevant Wireless Communication in Automotive Battery Management Systems

Sponsored by Texas Instruments

With increasing energy density in HEV/EVs, effective battery management and monitoring is essential to avoid any kind of hazards related to overvoltage or overtemperature. This paper explores achieving ASIL D functional safety compliance while using a wireless battery management system.

Click here to download the whitepaper

Featured Chalk Talk

Mom, I Have a Digital Twin? Now You Tell Me?

Sponsored by Cadence Design Systems

Today, one engineer’s “system” is another engineer’s “component.” The complexity of system-level design has skyrocketed with the new wave of intelligent systems. In this world, optimizing electronic system designs requires digital twins, shifting left, virtual platforms, and emulation to sort everything out. In this episode of Chalk Talk, Amelia Dalton chats with Frank Schirrmeister of Cadence Design Systems about system-level optimization.

Click here for more information