editor's blog
Subscribe Now

IMUs Feature Quartz

Epson has recently made a series of announcements in the IMU space, including a new V-series that they claim features the “world’s smallest IMU” (defined as “The smallest IMU among high-performance IMUs having gyro bias instability of 10 dph or less (as of the beginning of August 2013, according to Epson’s research)”). That would be 10x12x4 mm.

Why are they not comparing themselves to the silicon guys? Because their fundamental sense element material isn’t silicon; it’s quartz, branded as QMEMS.  At least for the gyroscope, which they make. The accelerator in the IMU comes from someone else; they’ve not disclosed that partner. (And they say that no one has yet successfully made a quartz-based accelerator.)

So what’s with this quartz stuff, anyway? And isn’t quartz simply SiO2, like the SiO2 on silicon chips? Well, yes and no. It is SiO2, but it’s crystalline – the dielectric layers on chips are not. They grow a specific quartz crystal – the fabrication process includes an anneal that lasts for months in a 30-m-high autoclave. The cut they make off the crystal also determines the temperature stability.

The benefit is a high-quality (i.e., high Q), stable output that requires less conditioning than a silicon element would need. In fact, they say that silicon folks sometimes use redundant elements and average them to stabilize the result. This is also different from Qualtré’s approach, which uses a resonating disk: Epson’s element vibrates, but not at resonance.

Of course, this isn’t going to compete with the gyro that’s going into your phone when it comes to price. This is a more upscale version for use where accuracy commands a premium. One application they mentioned that can take advantage is SATCOM OTM – “on the move” – used for maintaining a satellite linkup while moving. The IMU is needed for fine alignment.

They’ve announced a G-series of other industrial IMUs as well that use their older technology. The difference with the V series is the new sense element – they say they can fit eight of the new ones in the space required by one of the old ones (which they claim was already pretty small). They also don’t need mechanical isolation or vacuum chambers like some larger high-performance IMUs need.

You can find more performance detail on the G-series device here, and on the V series here.

Leave a Reply

featured blogs
May 5, 2021
New 5G infrastructure is powering smart city projects worldwide; explore the importance of IoT security for smart city solutions in public safety & logistics. The post How 5G Networks Will Accelerate Development of Smart Cities appeared first on From Silicon To Software...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....
May 3, 2021
As a NASA flight enthusiast, the idea of unmanned aerial vehicle systems (also known as drones) sounds like a lot of fun. A good example of how fun drones can be is through drone racing'¦yes you read that right'¦ drone racing! However, apart from how fun they can be, drones...
May 2, 2021
https://youtu.be/1HEd6JCriCQ Made in Groveland CA (camera Carey Guo) Monday: Package Assembly Design Kits Tuesday: Rapid Adoption of the Arm Server-Class Processors Wednesday: Arm V9A Thursday:... [[ Click on the title to access the full blog on the Cadence Community site. ]...

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Optimizing an OpenCL AI Kernel for the data center using Silexica’s SLX FPGA

Sponsored by Silexica

AI applications are increasingly contributing to FPGAs being used as co-processors in data centers. Silexica's newest application note shows how SLX FPGA accelerates an AI-related face detection design example, leveraging the bottom-up flow of Xilinx’s Vitis 2020.2 and Alveo U280 accelerator card.

Click to read

featured chalk talk

Cutting the AI Power Cord: Technology to Enable True Edge Inference

Sponsored by Mouser Electronics and Maxim Integrated

Artificial intelligence and machine learning are exciting buzzwords in the world of electronic engineering today. But in order for artificial intelligence or machine learning to get into mainstream edge devices, we need to enable true edge inference. In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis from Maxim Integrated about the MAX78000 family of microcontrollers and how this new microcontroller family can help solve our AI inference challenges with low power, low latency, and a built-in neural network accelerator. 

Click here for more information about Maxim Integrated MAX78000 Ultra-Low-Power Arm Cortex-M4 Processor