editor's blog
Subscribe Now

Interconnect @ 7 nm

IC interconnect is supposed to do two things: provided a path for electrons with as little resistance as possible and ensure that different paths don’t interact with each other. The first is about metal, the second about the dielectric between metal lines.

Copper is a good, low-resistance metal, but you can’t simply put copper on silicon or it can diffuse in. So you have to put down a barrier layer first, some sort of metal that will block the copper from contacting the silicon directly. Then you need a seed layer to enable the copper to adhere to the barrier and grow from there when deposited.

So far, we’ve been using Ta and TaN as barriers, about 16 nm of it. With a thick metal stack, that’s not an issue. The barrier itself may not have the lowest-possible resistance, but when it’s a small percentage of the stack, with copper making up the bulk, then, for the most part, you don’t notice.

Problem is, copper is getting thinner, and the barrier isn’t. This means that the resistance is going up as the percent of copper goes down. Which suggests the need for a new barrier that can be made thinner (putting off the day of reckoning).

As related in a discussion coincident with Imec’s Technology Forum and Semicon West, Imec has found that a 4-nm layer of Mn can reduce the resistance of 40-nm half-pitch lines by 45%, suggesting that this could be a good next step. It’s not a done deal yet, since they haven’t demonstrated reliability, nor have they completed the other duties needed to get a new material into the manufacturing flow; those efforts are underway.

Meanwhile, on the dielectric side of things, low-Κ dielectrics get their low Κ from the fact that they’re porous and have embedded carbon. The problem is, during an etch cycle, the etchant starts to invade the pores and remove the carbon. When done only on the fringes of a large expanse of oxide, that might not have a discernible effect. But on thin strips of oxide between metal lines, it essentially turns what are supposed to be low-Κ lines into normal-Κ lines.

In order to explore what might happen if the etch operation was done at very low temperatures, Imec did some experiments under cryogenic conditions. As expected, the ion mobility went down, slowing depletion, but a surprise effect occurred: some sort of barrier layer developed on the oxide, protecting it from the etchant. They’re not really sure what this barrier consists of.

They are also not sure what temperature enables the effect. If it truly requires cryogenic conditions, then it’s likely going to be too expensive to put into production. But if simply lowering the temperature to something more accessible can cause the effect, then we may have something interesting to pursue.

The thing is, Imec says that this is the only solution to the etch issue currently under study. So if it doesn’t work, then we’re back to square 1. Obviously, their fingers are crossed.

You can find out more about their metal announcement in one release and their dielectric announcement in another.

Leave a Reply

featured blogs
Dec 1, 2020
If you'€™d asked me at the beginning of 2020 as to the chances of my replicating an 1820 Welsh dresser, I would have said '€œzero,'€ which just goes to show how little I know....
Dec 1, 2020
More package designers these days, with the increasing component counts and more complicated electrical constraints, are shifting to using a front-end schematic capture tool. As with IC and PCB... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

Improve SoC-Level Verification Efficiency by Up to 10X

Sponsored by Cadence Design Systems

Chip-level testbench creation, multi-IP and CPU traffic generation, performance bottleneck identification, and data and cache-coherency verification all lack automation. The effort required to complete these tasks is error prone and time consuming. Discover how the Cadence® System VIP tool suite works seamlessly with its simulation, emulation, and prototyping engines to automate chip-level verification and improve efficiency by ten times over existing manual processes.

Click here for more information about System VIP

featured paper

Streamlining functional safety certification in automotive and industrial

Sponsored by Texas Instruments

Functional safety design takes rigor, documentation and time to get it right. Whether you’re designing for the factory floor or cars on the highway, this white paper explains how TI is making it easier for you to find and use its integrated circuits (ICs) in your functional safety designs.

Click here to download the whitepaper

Featured Chalk Talk

Microchip PIC-IoT WG Development Board

Sponsored by Mouser Electronics and Microchip

In getting your IoT design to market, you need to consider scalability into manufacturing, ease of use, cloud connectivity, security, and a host of other critical issues. In this episode of Chalk Talk, Amelia Dalton sits down with Jule Ann Baker of Microchip to chat about these issues, and how the Microchip PIC-IoT WG development board can help you overcome them.

Click here for more information about Microchip Technology PIC-IoT WG Development Board (AC164164)