editor's blog
Subscribe Now

Interconnect @ 7 nm

IC interconnect is supposed to do two things: provided a path for electrons with as little resistance as possible and ensure that different paths don’t interact with each other. The first is about metal, the second about the dielectric between metal lines.

Copper is a good, low-resistance metal, but you can’t simply put copper on silicon or it can diffuse in. So you have to put down a barrier layer first, some sort of metal that will block the copper from contacting the silicon directly. Then you need a seed layer to enable the copper to adhere to the barrier and grow from there when deposited.

So far, we’ve been using Ta and TaN as barriers, about 16 nm of it. With a thick metal stack, that’s not an issue. The barrier itself may not have the lowest-possible resistance, but when it’s a small percentage of the stack, with copper making up the bulk, then, for the most part, you don’t notice.

Problem is, copper is getting thinner, and the barrier isn’t. This means that the resistance is going up as the percent of copper goes down. Which suggests the need for a new barrier that can be made thinner (putting off the day of reckoning).

As related in a discussion coincident with Imec’s Technology Forum and Semicon West, Imec has found that a 4-nm layer of Mn can reduce the resistance of 40-nm half-pitch lines by 45%, suggesting that this could be a good next step. It’s not a done deal yet, since they haven’t demonstrated reliability, nor have they completed the other duties needed to get a new material into the manufacturing flow; those efforts are underway.

Meanwhile, on the dielectric side of things, low-Κ dielectrics get their low Κ from the fact that they’re porous and have embedded carbon. The problem is, during an etch cycle, the etchant starts to invade the pores and remove the carbon. When done only on the fringes of a large expanse of oxide, that might not have a discernible effect. But on thin strips of oxide between metal lines, it essentially turns what are supposed to be low-Κ lines into normal-Κ lines.

In order to explore what might happen if the etch operation was done at very low temperatures, Imec did some experiments under cryogenic conditions. As expected, the ion mobility went down, slowing depletion, but a surprise effect occurred: some sort of barrier layer developed on the oxide, protecting it from the etchant. They’re not really sure what this barrier consists of.

They are also not sure what temperature enables the effect. If it truly requires cryogenic conditions, then it’s likely going to be too expensive to put into production. But if simply lowering the temperature to something more accessible can cause the effect, then we may have something interesting to pursue.

The thing is, Imec says that this is the only solution to the etch issue currently under study. So if it doesn’t work, then we’re back to square 1. Obviously, their fingers are crossed.

You can find out more about their metal announcement in one release and their dielectric announcement in another.

Leave a Reply

featured blogs
May 16, 2021
https://youtu.be/_wup2MSTVks Made on Communication Hill, San Jose (camera Carey Guo) Monday: Intel eASIC: Linley and DARPA Tuesday: Please Excuse the Mesh: CFD and Pointwise Wednesday: Linley:... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
May 13, 2021
Samtec will attend the PCI-SIG Virtual Developers Conference on Tuesday, May 25th through Wednesday, May 26th, 2021. This is a free event for the 800+ member companies that develop and bring to market new products utilizing PCI Express technology. Attendee Registration is sti...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

What’s Hot: DesignWare Logic Library IP for TSMC N5

Sponsored by Synopsys

Designing for N5? Josefina Hobbs details the latest info and customer results on Logic Library IP for TSMC N5. Whether performance, power, area or routability are your key concerns, Synopsys Library IP helps you meet your toughest design challenges.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries, GPIO & PVT Sensors

featured paper

Three considerations for automotive powertrain safety and security

Sponsored by Texas Instruments

With functional safety and security concerns in automotive electronics gaining attention, including in standards bodies, it’s important for automotive designers to enable functionally safe and secure automotive electric powertrains. Learn about three key safety and security considerations designers need to keep in mind when developing in the automotive space.

Click here to read

featured chalk talk

Thermocouple Temperature Sensor Solution

Sponsored by Mouser Electronics and Microchip

When it comes to temperature monitoring and management, industrial applications can be extremely demanding. With temperatures that can range from 270 to 3000 C, consumer-grade temperature probes just don’t cut it. In this episode of Chalk Talk, Amelia Dalton chats with Ezana Haile of Microchip technology about using thermocouples for temperature monitoring in industrial applications.

More information about Microchip Technology MCP9600, MCP96L00, & MCP96RL00 Thermocouple ICs