editor's blog
Subscribe Now

Cleaning Up After You

This is something of a more off-the-beaten path story that I ran into at Semicon West. I talked with a German company called DAS that focuses on environmental remediation. In other words, cleaning up after the rest of you.

Fabs have always needed scrubbers to clean up the wide variety of rather questionable substances that really shouldn’t be out wandering the streets without supervision. Typically, that’s been done in one place: all of the various waste gasses from the different processes would be directed to the Mother of All Gas Confabs to mix and mingle and then – in the ultimate betrayal – to be scrubbed. Sort of like inviting folks with outstanding warrants to pick up their winning lottery tickets and then arresting them when they get there.

But that takes lots of piping and, not inconsequentially, creates some level of risk as the various gasses are allowed to consort with each other. The trend is away from centralized scrubbing and towards point-of-use abatement, meaning that each process or machine has its gasses neutralized at the machine rather than all in one place.

It turns out that there are very different treatments for different waste gas streams – especially when you look beyond just the semiconductor business. Techniques include “burn/wet” treatment (where water scrubs the burn products); electrostatic treatment for dust; “thermal/wet” treatments; oxidation/pyrolysis for LEDs (hydrogen and ammonia); and a new “wet” treatment for lab bench waste.

At Semicon West, they focused on two systems – an existing one and that new one. The Styrax system is a burn/wet unit used for waste gasses from etch, CVD, metal organic CVD (MOCVD), transparent conductive oxide (TCO) deposition, and epitaxy. It’s a water-intensive process (many of these seem to be), but they’ve gotten water usage down to 1 l/min through the use of lye; without it they would need more like 20 l/min.

Then they announced a new system called Salix for single-wafer clean wet bench processes. This is for water-soluble waste gasses, and it has two stages – one for acids, one for alkalis. It doesn’t handle organics (presumably not an issue for this application). It can handle up to 3 x4 inlets, so, I guess in that regard, there’s still some mixage going on… just not at the building level.

You can check out more detail in their Salix release.

Leave a Reply

featured blogs
Dec 2, 2022
A picture tells more than a thousand words, so here are some pictures of CadenceLIVE Europe 2023 Academic and Entrepreneur Tracks to tell a story. After two years of absence, finally the Academic Dinner could take place with professors from Lead Institutions and Program Chair...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Series Five Product Introduction

Sponsored by Mouser Electronics and Amphenol Aerospace

Size and weight are critical design considerations when it comes to military and aerospace applications. One way to minimize weight and size in these kinds of designs is to take a closer look at your choice of connectors. In this episode of Chalk Talk, Amelia Dalton chats with Anthony Annunziata from Amphenol Aerospace about the series five next generation connectors from Amphenol Aerospace. They investigate the size and weight advantages that these connectors bring to military and aerospace applications and how you can get started using the series five in your next design.

Click here for more information about Amphenol Aerospace Series Five Black Zinc-Nickel Circular Connectors